MA3151-MATRICES AND CALCULUS

<u>UNIT-3</u>

FUNCTIONS OF SEVERAL VARIABLES

Mr.V.PRAKASH,M.Sc;M.Phil;B.Ed; Assistant Professor Department of Mathematics

UNIT-2

FUNCTIONS OF SEVERVAL VARIABLES Chapter - 3.1 [Partial Differentiation] Note (o) Let Z= of (X, Y) be a function of two valiable. then dz, dz is first order P.D. Equations (i) let $\phi = f(x, y, z)$ be a function of three variable then differ, did & did is first orde PD. Equation Mi) Again we d'Aferentiate. We get $\frac{\partial^2 p}{\partial x^2}, \frac{\partial^2 q}{\partial y^2}, \frac{\partial^2 q}{\partial z^2}, \frac{\partial^2 q}{\partial x \partial y}, \frac{\partial^2 q}{\partial x \partial z}, \frac{\partial^2 q}{\partial y \partial z}$ Example -0 If Z = x+y+xy, find $\frac{\partial z}{\partial x} \partial \frac{\partial z}{\partial y}$. Solui Priver that Z = X+Y +XY

 $\frac{\partial z}{\partial x} = 1 + y$ $\frac{\partial z}{\partial y} = 1 + x.$

Example @ If
$$u = \frac{y}{z} + \frac{z}{x}$$
, find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$
Solur:
Cover that $u = \frac{y}{z} + \frac{z}{x}$.
 $\frac{\partial u}{\partial x} = 0 + z (-\chi_{x}) = -\frac{z}{x^{1}}$
 $\frac{\partial u}{\partial y} = \frac{y}{z} + 0 = \frac{y}{z}$
 $\frac{\partial u}{\partial z} = y(-\chi_{z}) + \frac{y}{x} = -\frac{y}{z^{1}} + \frac{y}{x}$.
To find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$
 $= x[-\frac{z}{x^{2}}] + y[\frac{y}{z}] + z[-\frac{y}{z^{1}} + \frac{y}{x}]$
 $= -\frac{z}{x} + \frac{y}{z} + -\frac{yz}{z^{1}} + \frac{z}{x}$
 $= -\frac{z}{x} + \frac{y}{z} - \frac{y}{z} + \frac{z}{x}$

Example-3 If U = (x-y)(y-z)(z-x), Show that $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z} = 0$.

Solut

Given that U = (X-y)(y-z)(z-x)

$$\begin{split} \mathcal{U} &= (X - Y)(Y - Z)(Z - X) \\ \mathcal{U} &= (Y - Z) \left[(X - Y)(-1) + (Z - X)(1) \right] \\ &= (Y - Z) \left[- (X - Y) + (Y - Z)(1) \right] \\ &= -(Y - Z)(X - Y) + (Y - Z)(Z - X) \\ \mathcal{U} &= (Z - X) \left[(X - Y) (1) + (Y - Z)(-1) \right] \\ &= (Z - X) \left[(X - Y) - (Y - Z) \right] \\ &= (Z - X) \left[(X - Y) - (Z - X)(Y - Z) \right] \\ &= (X - X) \left[(Y - Y) - (Z - X)(Y - Z) \right] \\ &= (X - Y) \left[(Y - Z) - (Z - X) \right] \\ &= (X - Y) \left[(Y - Z) - (Z - X) \right] \\ &= (X - Y) (Y - Z) - (X - X) \end{split}$$

TO Probe $\frac{\partial 4}{\partial 1} + \frac{\partial 4}{\partial y} + \frac{\partial 4}{\partial z} = 0$

$$\frac{\partial 4}{\partial 2} + \frac{\partial 4}{\partial y} + \frac{\partial 4}{\partial z} = 0 //$$

2

Hence Proved.

Example 6 The u = dog (x^u + y^u + zⁱ), Prove that

$$\frac{\partial^{2}u}{\partial x^{u}} + \frac{\partial^{2}u}{\partial y^{u}} + \frac{\partial^{2}u}{\partial z^{v}} = \frac{2}{x^{2}+y^{2}+z^{u}}.$$
Solut (nown that $u = log(x^{1}+y^{2}+z^{u})$

$$\frac{\partial u}{\partial x} = \frac{1}{x^{2}+y^{2}+z^{u}}(2x)$$

$$\frac{\partial^{2}u}{\partial x^{t}} = \frac{(x^{2}+y^{2}+z^{2})(2) - (2x)(2x)}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$= \frac{2x^{2}+2y^{2}+2z^{2}-bx^{u}}{(2x^{2}+y^{2}+z^{2})^{2}}$$

$$= \frac{2y^{2}+2z^{2}-2x^{u}}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial x^{u}} = \frac{2(x^{2}+z^{2}-x^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$= \frac{2(x^{2}+z^{2}-zx^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial x^{u}} = \frac{2(x^{2}+z^{2}-y^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(x^{2}+z^{2}-y^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(x^{2}+z^{2}-z^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(x^{2}+z^{2}-z^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(x^{2}+z^{2}-z^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(x^{2}+z^{2}-z^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(y^{2}+z^{2}-x^{2}+z^{2}+z^{2}+z^{2}-z^{2})}{(x^{2}+y^{2}+z^{2})^{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = \frac{2(y^{2}+z^{2}-x^{2}+x^{2}+z^{2}+y^{2}+z^{2}-z^{2})}{(x^{2}+y^{2}+y^{2}+z^{2}-z^{2}-z^{2})}$$

Ð

= 2[y'+z'-x'+x+z'-y+x+x+y-z] (x++++z)2 $= \frac{2\left[2^{\prime}+y^{\prime}+z^{\prime}\right]}{\left(2^{\prime}+y^{\prime}+z^{\prime}\right)^{\chi}}$ $= \frac{2}{2^{2}+4^{2}+7^{2}}$ $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{2}{\chi^2 + y^2 + z^2}$ Example-G If $\mathcal{U} = (x^2 + y^2 + z^2)^{1/2} P T \frac{\partial^2 \mathcal{U}}{\partial x^2} + \frac{\partial^2 \mathcal{U}}{\partial y^2} + \frac{\partial^2 \mathcal{U}}{\partial z^2} = 0.$ Solut: Griven that $\mathcal{U} = (\mathcal{U}^{\dagger} + \mathcal{Y}^{\dagger} + \mathcal{Z}^{\dagger})^{-1/2}$ Diff. P. W. r. to. x. $\frac{\partial u}{\partial x} = -\frac{1}{2} \left(2 \left(2 \left(\frac{1}{2} + y^2 + z^2 \right)^{-3/2} \right) \left(\frac{1}{2} \right) \right)$ $= -x(x^{2}+y^{2}+z^{2})^{-3/2}$ $\frac{\partial^2 u}{\partial x^2} = - \left[2((3/2))(x^2 + y^2 + z^2) (2x) + (x^2 + y^2 + z^2)^{-3/2} \right]$ $= - \left[-3 x^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-5/2} + \left(x^{2} + y^{2} + z^{2} \right)^{9/2} \right]$ $= \left(3x^{2} (x^{2} + y^{2} + z^{2})^{-5/2} - (x^{2} + y^{2} + z^{2})^{-3/2} \right)$ $= (3c^{2}+y^{2}+z^{2})^{5/2} \int 3yc^{2}-x^{2}-y^{2}-z^{2} f$ $= (x^{2} + y^{2} + z^{2})^{5/2} [2x^{2} - y^{2} - z^{2}] \longrightarrow 0$

(5)

$$\begin{split} \| \| \int_{V} \frac{\partial^{2} u}{\partial y^{2}} &= (x^{2} + y^{2} + z^{2}) \int [2y^{2} - x^{2} - z^{2}] \longrightarrow (2) \\ \frac{\partial^{2} u}{\partial z^{2}} &= (x^{2} + y^{2} + z^{2}) \int [2z^{2} - x^{2} - y^{2}] \longrightarrow (3) \\ \frac{\partial^{2} u}{\partial z^{2}} &= (x^{2} + y^{2} + z^{2}) \int [2x^{2} - y^{2} - y^{2}] \longrightarrow (3) \\ \frac{\partial^{2} u}{\partial x^{2}} &+ \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} &= (p^{2} + y^{2} + z^{2}) \int (2x^{2} - y^{2} - z^{2}) \\ &+ (y^{2} + y^{2} + z^{2}) \int (2x^{2} - x^{2} - y^{2}) \\ &+ (y^{2} + y^{2} + z^{2}) \int (2x^{2} - x^{2} - y^{2}) \\ &+ (x^{2} + y^{2} + z^{2}) \int (2x^{2} - x^{2} - y^{2}) \\ &= [x^{2} + y^{2} + z^{2}] \int (2x^{2} - x^{2} - x^{2} - y^{2}) \\ &= [x^{2} + y^{2} + z^{2}] \int (2x^{2} - x^{2} - x^{2} - y^{2}) \\ &= [x^{2} + y^{2} + z^{2}] \int (2x^{2} - x^{2} - x^{2} - x^{2} + 2x^{2} - x^{2} - x^{2}) \\ &= [x^{2} + y^{2} + z^{2}] \int (2x^{2} - x^{2} - x^{2} - x^{2} + 2x^{2} - x^{2} - x^{2}) \\ &= [x^{2} + y^{2} + z^{2}] \int (2x^{2} - x^{2} - x^{2} - x^{2} + 2x^{2} - x^{2} - x^{2}) \\ &= [x^{2} + y^{2} + z^{2}] \int (2x^{2} - x^{2} - x^{2} - x^{2} - x^{2} + 2x^{2} - x^{2} - x^{2} + 2x^{2} - x^{2} + 2x^{2} - x^{2} - x^{2} + 2x^{2} - x^{2} + 2x^{2} - x^{2} - x^{2} + 2x^{2} + 2x^{2} + 2x^{2} - x^{2} + 2x^{2} + 2x^{2$$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.11$$

Solur Griven that $x = r \cos \varphi \implies x = r \cos \varphi$ $y = r \sin \varphi \implies y = r^2 \sin^2 \varphi$

$$z^{2} + y^{2} = z^{2} \cos \theta + z^{2} \sin \theta$$
$$= z^{2} [\cos \theta + \sin^{2} \theta]$$
$$\int x^{2} + y^{2} = z^{2} / z^{2}$$

Here,
$$y'' = x' + y'$$

 $T = \sqrt{3x^2 + y^2}$
Diff. P. W. J. b. y'
 $\frac{\partial x}{\partial x} = \frac{1}{x \sqrt{x' + y^2}} (x)$
 $\frac{\partial y}{\partial x} = \frac{1}{x \sqrt{x' + y^2}} (x)$
 $\frac{\partial y}{\partial y} = \frac{1}{x \sqrt{x' + y^2}} (x)$
 $= \frac{x}{\sqrt{x' + y^2}}$
 $\frac{\partial x}{\partial x} = \frac{x}{x}$
 $\frac{\partial y}{\partial y} = \frac{y}{\sqrt{x' + y^2}}$

Example
$$\overrightarrow{O}$$
 If $\overrightarrow{p} = f(x-y, y-z, z-x)$, then show that
 $\frac{\partial \overrightarrow{p}}{\partial x} + \frac{\partial \cancel{p}}{\partial y} + \frac{\partial \cancel{p}}{\partial z} = 0$.

50 m2.

Griben that $\phi = f(x, y, y, z, z, x)$ is $\phi = f(u, v, w)$

Here,

$$\begin{aligned}
\mathcal{U} = \chi - \mathcal{Y} & \mathcal{V} = \mathcal{Y} - \mathcal{Z} & \mathcal{W} = \mathcal{Z} - \chi \\
\frac{\partial \mathcal{U}}{\partial \chi} = 1 & \frac{\partial \mathcal{V}}{\partial \chi} = 0 & \frac{\partial \mathcal{U}}{\partial \chi} = -1 \\
\frac{\partial \mathcal{U}}{\partial \mathcal{Y}} = -1 & \frac{\partial \mathcal{V}}{\partial \mathcal{Y}} = 1 & \frac{\partial \mathcal{W}}{\partial \mathcal{Y}} = 0 \\
\frac{\partial \mathcal{U}}{\partial \mathcal{Z}} = 0 & \frac{\partial \mathcal{V}}{\partial \mathcal{Z}} = -1 & \frac{\partial \mathcal{W}}{\partial \mathcal{Z}} = 1
\end{aligned}$$

 \hat{f}_{i}

 $\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial \phi}{\partial w} \frac{\partial w}{\partial x}$ $=\frac{\partial\phi}{\partial u}(1)+\frac{\partial\phi}{\partial V}(0)+\frac{\partial\phi}{\partial U}(-1)$ $\frac{\partial \phi}{\partial x} = \frac{\partial \phi}{\partial u} = \frac{\partial \phi}{\partial u} = \frac{\partial \phi}{\partial u}$ $\frac{\partial \phi}{\partial y} = \frac{\partial \phi}{\partial u} \cdot \frac{\partial y}{\partial y} + \frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial y} + \frac{\partial \phi}{\partial u} \cdot \frac{\partial w}{\partial y}$ $=\frac{\partial\phi}{\partial u}(-)^{2}+\frac{\partial\phi}{\partial u}(-)^{2}+\frac{\partial\phi}{\partial u}(-)^{2}$ $\frac{\partial \phi}{\partial y} = -\frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial y} \longrightarrow 0$ $\frac{\partial \phi}{\partial z} = \frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial z} + \frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial z} + \frac{\partial \phi}{\partial w} \cdot \frac{\partial w}{\partial z}$ $=\frac{\partial\phi}{\partial\mu}(\phi)+\frac{\partial\phi}{\partial\nu}(-1)+\frac{\partial\phi}{\partial\nu}(1)$ $\frac{\partial \phi}{\partial z} = -\frac{\partial \phi}{\partial v} + \frac{\partial \phi}{\partial w} \longrightarrow 3$ Adding O, @ & 3, we get $\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + \frac{\partial \phi}{\partial z} = \frac{\partial \phi}{\partial u} - \frac{\partial \phi}{\partial u} - \frac{\partial \phi}{\partial u} + \frac{\partial \phi}{\partial v} - \frac{\partial \phi}{\partial v} + \frac{\partial \phi}{\partial v} + \frac{\partial \phi}{\partial u}$ = 0.//

(-

Hence proved.

3

Chapter 2:2 [EWer's Theorem For Homogeneous
Functions]
If a is a homogeneous functions of deglee 'n'
in
$$x \& y$$
, then $\boxed{x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu}_{\partial x}$
Example \bigcirc Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$ logu.
Where $\log u = \frac{x^3 + y^3}{3x + 4y}$.
Solow:
Color that $\log u = \frac{x^3 + y^3}{3x + 4y}$.
 $2dt = 2\log u$
 $= \frac{x^3 + y^3}{3x + 4y} = \frac{x^3 [1 + y]_{x^3}}{x[3 + 4y]}$
 $z = \frac{x^2 [1 + y]_{x^3}}{(3 + 4y]_{x}}$
 $z = \frac{x^2 [1 + y]_{x^3}}{(3 + 4y]_{x}}$
 $\therefore z$ is a homogeneous function of degree 'z', In=2]
By Euler's theorem $2(\frac{\partial z}{\partial x} + y) \frac{\partial z}{\partial y} = nz \longrightarrow \bigcirc$
Now. $z = \log u$
 $\frac{\partial z}{\partial y} = \frac{1}{u} \cdot \frac{\partial u}{\partial y}$

 $\mathcal{C}_{\mathcal{A}}$

Ð

(a)
from
$$\textcircled{O} \Rightarrow x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = n z$$

 $x \left[\frac{i}{u} \frac{\partial u}{\partial x} \right] + y \left[\frac{i}{u} \cdot \frac{\partial u}{\partial y} \right] = 2 hyu$
 $y_u \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right] = 2 hyu$
 $\left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right] = 2 hyu$
 $\left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right] = 2 hyu$
 $f u = bm^{-1} \left[\frac{x^3 + y^3}{x - y} \right], then Prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 5in_2u$.
Solut Civen that $u = bm^{-1} \left[\frac{x^3 + y^3}{x - y} \right] \Rightarrow bm u = \frac{x^3 + y^3}{x - y}$
 $ht z = tam u$.
 $= \frac{x^3 + y^3}{x - y} = \frac{x^3 \left[\frac{1 + y^3}{x - y} \right]}{x \left[1 - \frac{y_2}{x} \right]}$
 $z = \frac{2x^2 \left[1 + \frac{y^3}{x^3} \right]}{\left[1 - \frac{y_2}{x} \right]}$
 $z = \frac{2x^2 \left[1 + \frac{y^3}{x^3} \right]}{\left[1 - \frac{y_2}{x} \right]}$
 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz$
 $y = bulet therem.$
 $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z \longrightarrow 0$$

$$\begin{aligned} bt \quad z = \tan u \\ \frac{\partial z}{\partial x} &= \sec^2 u \frac{\partial u}{\partial x} \quad d \quad \frac{\partial z}{\partial y} = \sec^2 u \frac{\partial y}{\partial y} \\ 0 \implies x \quad \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z. \\ x \left[\sec^2 u \quad \frac{\partial u}{\partial x} \right] + y \left[\sec^2 u \frac{\partial u}{\partial y} \right] = 2 \tan u \\ \sec^2 u \left[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} \right] = 2 \tan u \\ x \quad \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2 \tan u}{\sec^2 u} \\ z \quad \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{2 \tan u}{\sec^2 u} \\ &= 2 \frac{3 \ln u}{\cos^2 u} \cdot \cos^2 u \\ \frac{x \quad \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}}{\cos^2 u} = 5 \ln 2u \\ x \quad \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 5 \ln 2u \end{aligned}$$

(1)

E)(If $U = \cos\left[\frac{x+y}{\sqrt{x+y}}\right]$. Prune that $x\frac{\partial y}{\partial y} + y\frac{\partial y}{\partial y} = -\frac{y}{2}$ Cot U. Solur

Criven that $U = \cos\left[\frac{x+y}{\sqrt{x+y}}\right]$

Let $z = \cos \alpha$.

$$Z = Cosu$$

$$= \frac{x+y}{\sqrt{x+y}} = \frac{x[1+\frac{y}{x}]}{\sqrt{x}(1+\frac{y}{y})}$$

$$= \frac{x[1+\frac{y}{x}]}{x^{\frac{y}{2}}[1+\frac{y}{x}]} = \frac{x^{\frac{y}{2}}[1+\frac{y}{x}]}{[1+\frac{y}{y}]}$$

$$Z = \frac{x^{\frac{y}{2}}[1+\frac{y}{x}]}{[1+\frac{y}{y}]} = \frac{x^{\frac{y}{2}}}{[1+\frac{y}{y}]}$$

$$Z = \frac{x^{\frac{y}{2}}[1+\frac{y}{x}]}{\frac{y}{y}} = \frac{y}{y}$$

$$Z = \frac{x^{\frac{y}{2}}[1+\frac{y}{x}]}{\frac{y}{y}} = \frac{x^{\frac{y}{2}}[1+\frac{y}{x}]}{\frac{y}{y}} = \frac{y}{y}$$

$$Z = \frac{x^{\frac{y}{2}}[1+\frac{y}{x}]}{\frac{x^$$

(12)

Example G : If $Z = long(x^2 + xy + y^2)$. Show that
$x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2$, using Euler's theorem.
Given that $Z = log(x^{2} + \lambda y + y^{2})$ $e^{Z} = (x^{2} + \lambda y + y^{2})$
Let $f = e^{z} = (x^{2} + xy + y^{2})$
$= 2c^{2} \left[1 + \frac{y}{x} + \frac{y}{x^{2}} \right]$
.: If is homogeneous functions of degree [N=2]
By Euler's theorem.
$9c\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$
is $x \frac{\partial t}{\partial x} + y \frac{\partial t}{\partial y} = 2t \longrightarrow 0$
let $f = e^z$
$\frac{\partial f}{\partial x} = \frac{\partial^2 \partial z}{\partial x} + \frac{\partial f}{\partial y} = e^2 \frac{\partial z}{\partial y}.$
$(D \Rightarrow) x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 2e^{z}$
$x \left[\vec{e} \xrightarrow{\rightarrow z} \right] + y \left[\vec{e} \xrightarrow{\rightarrow z} \right] = 2 \vec{e}$
$e^{z}\left(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}\right) = 2 e^{z}$
$\mathcal{H} \frac{\partial z}{\partial x} + \mathcal{H} \frac{\partial z}{\partial y} = 2 \frac{\partial z}{\partial x} = 2 \frac{\partial z}{\partial x}$

(3)

Example (1)
Verify False's theorem for the function

$$u = x^{2} + y^{2} + 2xy$$
.
Solve:
Given that $u = x^{2} + y^{2} + 2xy$
It is clear that u is a homogeneous function of
deglee $[n=2]$
By Fulse's theorem.
 $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$
b. $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u$
 $\frac{\partial u}{\partial x} = 2x + 2y$
 $\frac{\partial u}{\partial x} = 2x + 2y$
 $\frac{\partial u}{\partial y} = 2u$
 $x (2x+2y) + y (2y+2x) = 2(x^{2} + y^{2} + 2xy)$
 $2x^{2} + 2x^{2} + 2xy = 2(x^{2} + y^{2} + 2xy)$
 $2x^{2} + 2x^{2} + 2xy = 2(x^{2} + y^{2} + 2xy)$
 $2(x^{2} + y^{2} + 2xy) = 2(x^{2} + y^{2} + 2xy)$
 $2(x^{2} + y^{2} + 2xy) = 2(x^{2} + y^{2} + 2xy)$
 $\frac{1}{2}(x^{2} + y^{2} + 2xy) = 2(x^{2} + y^{2} + 2xy)$
 $\frac{1}{2}(x^{2} + y^{2} + 2xy) = 2(x^{2} + y^{2} + 2xy)$

(h)

Example 0

$$Tf u = 5in^{-1}\left(\frac{x^{2}-y^{3}}{x+y}\right). \text{ Rive that}$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \text{ form } \text{ for } u \neq ing \text{ Eulor's theorem.}$$
Solut
Given that $u = 9in^{-1}\left[\frac{x^{2}-y^{3}}{x+y}\right]$

$$finu = \frac{x^{2}-y^{3}}{x+y}$$

$$ht z = 5inu$$

$$= \frac{x^{2}-y^{3}}{x+y} = \frac{x^{3}\left[1-\frac{y^{3}}{x^{3}}\right]}{x\left[1+\frac{y^{3}}{x}\right]}$$

$$Z = \frac{x^{4}\left[1-\frac{y^{3}}{x^{3}}\right]}{\left[1+\frac{y^{3}}{x}\right]}$$

$$Z = \frac{x^{4}\left[1-\frac{y^{3}}{x^{3}}\right]}{\left[1+\frac{y^{3}}{x}\right]}$$

$$X = \frac{x^{2}}{2x} + \frac{y^{2}}{2y} = nz$$

$$x = \frac{x^{2}}{2x} + \frac{y^{2}}{2y} = 2z \longrightarrow 0$$

$$het z = 5inu$$

$$\frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

$$x \left[\frac{\partial yu}{\partial x} + \frac{y^{2}}{\partial y} = 2z$$

* 1

16,

Chapter 3. 3 [Total Differential Coefficient].
If
$$u = f(x, y)$$
 as a function of $x ey$.
and $x = f(t) d y = f(t)$. then find $\frac{du}{dt} = 2$
 $\therefore \frac{dy}{dt} = \frac{\partial y}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt}$.
Find $\frac{du}{dt} = t$ $u = x^3 y^4$, where $x = t^3$, $y = t^3$.
Solut Correspondent $u = x^3 y^4$; $x = t^3$; $y = t^2$.
 $\frac{\partial u}{\partial x} = 3x^2 y^4$; $x = t^3$; $y = t^2$.
 $\frac{\partial u}{\partial x} = 3x^2 y^4$; $\frac{dx}{dt} = 3t^2 \int \frac{dy}{dt} = 2t$.
 $\frac{\partial u}{\partial x} = 3x^2 y^4$
 $\frac{\partial u}{\partial x} = 3t^2 y^4 = 3t^2 \int \frac{dy}{dt} = 2t$.
 $\frac{\partial u}{\partial x} = 3t^2 y^4 = 3t^2 \int \frac{dy}{dt} = 2t$.
 $\frac{\partial u}{\partial x} = 3t^2 y^4 = 3t^2 + 3t^2 = 3t^2 = 3t^2 + 3t^2 = 3t^2 = 3t^2 = 3t^2 + 3t^2 = 3t^2 = 3t^2 = 3t^2 + 3t^2 = 3t^2 = 3t^2 + 3t^2 = 3t^2 = 3t^2 = 3t^2 + 3t^2 = 3t^2 =$

 $= 9t^{16} + 8t^{16}$ $\frac{d4}{dt} = 17t^{16}$

 $\mathbf{\hat{j}}_{h}$

Ð

Example @ Find
$$\frac{du}{dx}$$
, if $u = lam^{-1}(2/y)$, where $x^{2} + y^{2} = a^{2}$.
Solur: The total differential of u is
 $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$
 $\pm by dx on b.s$
 $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$
 $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$
 $\frac{du}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$
 $\frac{\partial u}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$
 $\frac{\partial u}{dx} = \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \frac{dy}{dx}$
 $\frac{\partial u}{\partial x} = \frac{1}{1 + x^{2}/y^{2}} (1/y) = \frac{1}{y^{2} + x^{2}} (1/y)$
 $\frac{\partial u}{\partial x} = \frac{y}{x^{2} + y^{2}}$
 $\frac{\partial u}{\partial x} = \frac{1}{x^{2} + y^{2}}$
 $\frac{\partial u}{\partial y} = \frac{1}{x^{2} + y^{2}}$
Also, $x^{2} + y^{2} = a^{2}$
 $p(x) + w \cdot x + b \cdot x^{2}$, we get $2x + 2y \frac{dy}{dx} = 0$
 $2y \frac{dy}{dx} = -2x$
 $\frac{dy}{dx} = -2x$
 $\frac{dy}{dx} = -2x$

(8)

$$0 \implies \frac{du}{dx} = \frac{3u}{3x} + \frac{3u}{3y} \frac{dy}{dx}$$

$$= \frac{y}{x^{2}+y^{2}} + \frac{-2}{x^{2}+y^{2}} \left(-\frac{x}{y}\right)$$

$$= \frac{y}{x^{2}+y^{2}} + \frac{(e^{2}y)}{x^{2}+y^{2}}$$

$$= \frac{y+3^{2}y}{x^{2}+y^{2}} = \frac{(\frac{y}{3}+x^{2})}{x^{2}+y^{2}}$$

$$= \frac{(x^{2}+y^{2}y)}{x^{2}+y^{2}} = \frac{(\frac{y}{3}+x^{2})}{x^{2}+y^{2}}$$

$$\left[\frac{du}{dx} = \frac{y}{y}\right]$$

$$\frac{du}{dx} = \frac{y}{y}$$

$$\frac{du}{dx} = \frac{y}{$$

(9)

$$\frac{\partial Z}{\partial Y} = \frac{\partial Z}{\partial X} \frac{\partial X}{\partial Y} + \frac{\partial Z}{\partial y} \frac{\partial Y}{\partial Y}$$

$$\frac{\partial Z}{\partial Y} = \frac{\partial Z}{\partial X} (\omega y \theta) + \frac{\partial Z}{\partial y} (y (\omega \theta)) \longrightarrow 0$$

$$\frac{\partial Z}{\partial Y} = \frac{\partial Z}{\partial X} \frac{\partial X}{\partial \theta} + \frac{\partial Z}{\partial y} \frac{\partial Y}{\partial \theta}$$

$$= \frac{\partial Z}{\partial X} (-Y G (\omega \theta)) + \frac{\partial Z}{\partial y} (Y (\omega y \theta))$$

$$= Y \left[-\frac{\partial Z}{\partial X} S (\omega \theta) + \frac{\partial Z}{\partial y} (\omega y \theta) \right]$$

$$\frac{\partial Z}{\partial \theta} = \frac{\partial Z}{\partial y} (\omega y \theta) - \frac{\partial Z}{\partial Y} G (\omega y \theta)$$

$$\frac{\partial Z}{\partial \theta} = \frac{\partial Z}{\partial y} (z (y \theta) - \frac{\partial Z}{\partial y} G (z (y \theta)))$$

$$= \left(\frac{\partial Z}{\partial Y} \right)^{2} = \left[\frac{\partial Z}{\partial X} (z (y \theta) + \frac{\partial Z}{\partial y} G (z (y \theta)) \right]^{2}$$

$$= \left(\frac{\partial Z}{\partial X} \right)^{2} (\omega y \theta) + \frac{\partial Z}{\partial y} g (\omega \theta)^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} = \left[\frac{\partial Z}{\partial y} (\omega y \theta) - \frac{\partial Z}{\partial y} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} = \left[\frac{\partial Z}{\partial y} (\omega y \theta) - \frac{\partial Z}{\partial y} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} = \left[\frac{\partial Z}{\partial y} (\omega y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} = \left[\frac{\partial Z}{\partial y} (\omega y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} = \left[\frac{\partial Z}{\partial y} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial z} G (z (y \theta)) \right]^{2}$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial y} G (z (y \theta)) \right]^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta) - \frac{\partial Z}{\partial y} G (z (y \theta)) \right]^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial y} \right)^{2} (z (y \theta))$$

$$\frac{\partial Z}{\partial y} \left(\frac{\partial Z}{\partial$$

Adding 3 & D

$$\begin{split} (\widehat{\partial} + \widehat{\Theta} =) \left(\frac{\partial z}{\partial x} \right)^{2} + \frac{1}{y^{2}} \left(\frac{\partial z}{\partial \Theta} \right)^{2} = \left(\frac{\partial z}{\partial x} \right)^{2} (\operatorname{trio} \Theta + \left(\frac{\partial z}{\partial Y} \right)^{2} (\operatorname{trio} \Theta)^{2} (\operatorname{$$

 $\cdot \cdot \left(\frac{\partial z}{\partial v}\right)^2 + \frac{1}{2}\left(\frac{\partial z}{\partial v}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$

Example-4 If $\phi = f(\alpha, v)$, $\alpha = e^{2} \cos y$, $v = e^{2} \sin y$, Show that $\frac{\partial^{2} \phi}{\partial x^{2}} + \frac{\partial^{2} \phi}{\partial y^{2}} = (\alpha^{2} + v^{2}) \left[\frac{\partial^{2} \phi}{\partial \alpha^{2}} + \frac{\partial^{2} \phi}{\partial v^{2}} \right]$

50 m2.

Given that u=e wy | v=e sing $\frac{\partial u}{\partial x} = e^{\chi} \cos \eta \quad \left| \frac{\partial v}{\partial x} = e^{\chi} \sin \eta \right|$ $\frac{\partial u}{\partial y} = e^{\chi} (-siny) \left| \frac{\partial v}{\partial y} = e^{\chi} (vy) \right|$ $= -e^{\chi} Giny$

$$\begin{aligned} \frac{\partial \phi}{\partial x} &= \frac{\partial \phi}{\partial u} - \frac{\partial u}{\partial x} + \frac{\partial \phi}{\partial v} \cdot \frac{\partial v}{\partial x} \\ &= \frac{\partial \phi}{\partial u} \left(e^{x} (\omega y) \right) + \frac{\partial \phi}{\partial v} \left(e^{x} (\omega y) \right) \\ \frac{\partial \phi}{\partial x} &= u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} \longrightarrow 0 \\ \frac{\partial \phi}{\partial x} &= u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial x^{2}} &= \frac{\partial \phi}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) = \left(u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} \right) \left(u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} \right) \\ \frac{\partial^{2} \phi}{\partial x^{2}} &= \frac{\partial \phi}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) = \left(u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} \right) \left(u \frac{\partial \phi}{\partial u} + v \frac{\partial \phi}{\partial v} \right) \\ \frac{\partial^{2} \phi}{\partial x^{2}} &= \frac{\partial \phi}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial \phi}{\partial v} \frac{\partial u}{\partial u} + u v \frac{\partial^{2} \phi}{\partial u v} + v \frac{\partial \phi}{\partial v} \right) \\ \frac{\partial \phi}{\partial y} &= \frac{\partial \phi}{\partial u} \left(-e^{x} g_{xh} y \right) + \frac{\partial \phi}{\partial v} \left(e^{x} c_{xh} y \right) \\ &= \frac{\partial \phi}{\partial u} \left(-e^{x} g_{xh} y \right) + \frac{\partial \phi}{\partial v} \left(e^{x} c_{xh} y \right) \\ \frac{\partial \phi}{\partial y} &= u \frac{\partial \phi}{\partial v} - v \frac{\partial \phi}{\partial u} \longrightarrow 0 \\ \frac{\partial \phi}{\partial y} &= u \frac{\partial \phi}{\partial v} - v \frac{\partial \phi}{\partial u} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial y^{2}} &= \frac{\partial \phi}{\partial x} \left(\frac{\partial \phi}{\partial y} \right) = \left(u \frac{\phi}{\partial v} - v \frac{\partial \phi}{\partial u} \right) \left(u \frac{\partial \phi}{\partial v} - v \frac{\partial \phi}{\partial u} \right) \\ \frac{\partial^{2} \phi}{\partial y^{2}} &= u^{2} \frac{\partial^{2} \phi}{\partial v^{2}} - u v \frac{\partial^{2} \phi}{\partial u v} - u v \frac{\partial^{2} \phi}{\partial u v} + v^{2} \frac{\partial^{2} \phi}{\partial u v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial v^{2}} &= u^{2} \frac{\partial^{2} \phi}{\partial v} - u v \frac{\partial^{2} \phi}{\partial u v} - u v \frac{\partial^{2} \phi}{\partial u v} + v^{2} \frac{\partial^{2} \phi}{\partial u v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial v^{2}} &= u^{2} \frac{\partial^{2} \phi}{\partial v} - v \frac{\partial^{2} \phi}{\partial u v} - u v \frac{\partial^{2} \phi}{\partial u v} + v^{2} \frac{\partial^{2} \phi}{\partial u v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial v^{2}} &= u^{2} \frac{\partial^{2} \phi}{\partial v} - u v \frac{\partial^{2} \phi}{\partial u v} - u v \frac{\partial^{2} \phi}{\partial u v} + v^{2} \frac{\partial^{2} \phi}{\partial u v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial u v} &= u \frac{\partial^{2} \phi}{\partial v} - v \frac{\partial^{2} \phi}{\partial v} - v \frac{\partial^{2} \phi}{\partial u v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial v v} &= u \frac{\partial^{2} \phi}{\partial v} - v \frac{\partial^{2} \phi}{\partial v} - v \frac{\partial^{2} \phi}{\partial u v} - v \frac{\partial^{2} \phi}{\partial u v} \longrightarrow 0 \\ \frac{\partial^{2} \phi}{\partial v v} &= u \frac{\partial^{2} \phi}{\partial v} - v \frac{\partial^{2} \phi}{\partial v$$

 $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial x} + \frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial x}$ $= \frac{\partial u}{\partial r} \binom{v_{0}}{v} + \frac{\partial u}{\partial s} (o) + \frac{\partial u}{\partial t} \cdot \binom{z}{x^{2}}$ $\frac{\partial u}{\partial t} = \underbrace{\&}_{0} \frac{\partial u}{\partial t} \binom{v_{0}}{v} - \frac{\partial u}{\partial t} \binom{z}{x^{2}} \longrightarrow 0$

23)

$$\begin{aligned} \frac{\partial u}{\partial y} &= \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y} \\ &= \frac{\partial u}{\partial r} \left(\frac{x}{y_{t}} \right) + \frac{\partial u}{\partial s} \left(\frac{y}{z} \right) + \frac{\partial u}{\partial t} \left(0 \right) \\ \frac{\partial u}{\partial y} &= -\frac{\partial u}{\partial r} \left(\frac{y}{y_{t}} \right) + \frac{\partial u}{\partial s} \left(\frac{y}{z} \right) \longrightarrow 0 \end{aligned}$$

$$\begin{aligned} \frac{\partial u}{\partial z} &= \frac{\partial u}{\partial r} \frac{\partial r}{\partial z} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial z} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial z} \\ &= \frac{\partial u}{\partial r} \left(0 \right) + \frac{\partial u}{\partial s} \left(-\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{x} \right) \\ \frac{\partial u}{\partial z} &= -\frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{x} \right) \\ \frac{\partial u}{\partial z} &= -\frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) \\ \frac{\partial u}{\partial z} &= -\frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) \longrightarrow 0 \end{aligned}$$

$$\begin{aligned} To \frac{find}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} \\ &= x \left[\frac{\partial u}{\partial r} \left(\frac{y}{y} \right) - \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) \right] + y \left[-\frac{\partial u}{\partial r} \left(\frac{y}{y} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) \right] \\ &+ z \left[-\frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) \right] \\ &= \frac{\partial u}{\partial r} \left(\frac{y}{y} \right) - \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) - \frac{\partial u}{\partial r} \left(\frac{y}{y_{t}} \right) + \frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) \\ &+ \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) - \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) - \frac{\partial u}{\partial t} \left(\frac{y}{z_{t}} \right) + \frac{\partial u}{\partial s} \left(\frac{y}{z_{t}} \right) \\ &+ \frac{\partial u}{\partial t} \left(\frac{z}{z_{t}} \right) \\ &+ \frac{\partial u}{\partial t} \left(\frac{z}{z_{t}} \right) - \frac{\partial u}{\partial t} \left(\frac{z}{z_{t}} \right) - \frac{\partial u}{\partial t} \left(\frac{z}{z_{t}} \right) + \frac{\partial u}{\partial t} \left(\frac{z}{z_{t}} \right) \\ &+ \frac{\partial u}$$

en

≠ O .

 $\frac{x}{\partial x} \frac{\partial y}{\partial y} \frac{\partial y}{\partial y} \frac{\partial z}{\partial z} = 0$

$$\frac{Example - 6}{zf} = f(2x - 3y, 3y - 4z, 4z - 2x), + ken find
\frac{1}{2} \cdot \frac{\partial u}{\partial x} + \frac{1}{3} \cdot \frac{\partial u}{\partial y} + \frac{1}{4} \cdot \frac{\partial u}{\partial z}.$$
Solur
Griven $u = f(2x - 3y, 3y - 4z, 4z - 2x)$
 $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$

Here,
$$\mathcal{Y} = 2X - 3Y$$
 $5 = 3Y - 4Z$ $t = 4Z - 2X$
 $\frac{\partial Y}{\partial X} = 2$ $\frac{\partial 5}{\partial X} = 0$ $\frac{\partial t}{\partial X} = -2$
 $\frac{\partial Y}{\partial Y} = -3$ $\frac{\partial 5}{\partial Y} = -3$ $\frac{\partial 5}{\partial Y} = -3$ $\frac{\partial t}{\partial Y} = 0$
 $\frac{\partial Y}{\partial Z} = 0$ $\frac{\partial 5}{\partial Y} = -4$ $\frac{\partial t}{\partial Z} = 4$

Now, $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial 5} \frac{\partial 5}{\partial x} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial x}$ $= \frac{\partial u}{\partial s}(2) + \frac{\partial u}{\partial s}(0) + \frac{\partial u}{\partial t}(-2)$ $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial s} - 2 \frac{\partial u}{\partial t} \longrightarrow 0$ $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial u}{\partial t} \frac{\partial t}{\partial y}$ $=\frac{\partial u}{\partial r}(+3)+\frac{\partial u}{\partial s}(3)+\frac{\partial u}{\partial f}(0)$ $\frac{\partial u}{\partial y} = -3 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial s} \longrightarrow (2)$

26 $\frac{\partial u}{\partial z} = \frac{\partial u}{\partial z} + \frac{\partial r}{\partial z} + \frac{\partial u}{\partial u} +$ $= \frac{\partial u}{\partial r}(0) + \frac{\partial u}{\partial s}(-4) + \frac{\partial u}{\partial r}(-4)$ $\frac{\partial u}{\partial z} = -4 \frac{\partial u}{\partial s} + 4 \frac{\partial u}{\partial t} \longrightarrow 3$ To find: 1/2 000 + 1/3 200 + 1/4 24 $= \frac{1}{2} \left[2 \frac{34}{2} - 2 \frac{34}{27} \right] + \frac{1}{3} \left[-3 \frac{34}{27} + 3 \frac{34}{25} \right]$ + 1/4 -4 34 +4 34] $= = = \left[\frac{2u}{3v} - \frac{2u}{3v} \right] + \frac{2u}{3s} \left[-\frac{2u}{3v} + \frac{2u}{3s} \right] + \frac{4}{5} \left[\frac{2u}{3s} + \frac{2u}{3v} \right]$ $= \frac{\partial u}{\partial t} - \frac{\partial u}{\partial t} - \frac{\partial u}{\partial t} + \frac{\partial u}{\partial s} - \frac{\partial u}{\partial s} + \frac{\partial u}{\partial t}$ = 0··· 1/2 2x + 1/3 24 + 1/4 24 =0/ Example-O If u=f(<u>y-x</u>, <u>z-x</u>), find the value $wf = \chi^2 \frac{\partial u}{\partial \chi} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z}.$ Soln' Criter that $U = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$ in u = f(x, 5)

Here,
$$r = \frac{y - x}{xy}$$

 $r = \frac{y}{xy} - \frac{x}{xy}$
 $r = \frac{y}{x} - \frac{y}{y}$
 $r = \frac{y}{x} - \frac{y}{y}$
 $r = \frac{y}{x^2}$
 $r = \frac{y}{x^2} - \frac{y}{x^2}$
 $r = \frac{y}{x^2}$

Now, $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial x}$ $= \frac{\partial u}{\partial x} \left(-\frac{1}{x^{2}} \right) + \frac{\partial y}{\partial s} \left(-\frac{1}{x^{2}} \right)$ $\frac{\partial u}{\partial x} = (-\chi_2) \frac{\partial u}{\partial y} - (\chi_2) \frac{\partial u}{\partial y} \longrightarrow \mathbb{D}$ $\frac{\partial u}{\partial y} = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial u}{\partial s} \frac{\partial s}{\partial y}$ $= \frac{\partial 4}{\partial x} \left(\frac{1}{2} e \right) + \frac{\partial 4}{\partial 5} (0)$ $\frac{\partial u}{\partial y} = (\frac{1}{2}y_2)\frac{\partial u}{\partial y} \longrightarrow \textcircled{}$ $\frac{\partial 4}{\partial z} = \frac{\partial 4}{\partial r} \left(\frac{\partial r}{\partial z} \right) + \frac{\partial 4}{\partial s} \frac{\partial s}{\partial z}$ $= \frac{\partial u}{\partial r} (0) + \frac{\partial u}{\partial s} (\frac{1}{2})$ $\frac{\partial u}{\partial z} = \left(\frac{1}{z^2}\right) \frac{\partial u}{\partial s} \longrightarrow \Im$

27

TO find: x 24 + y' 24 + 2 24 $= x^{2} \left[\frac{1}{\lambda^{2}} \frac{\partial u}{\partial r} - \frac{1}{\lambda^{2}} \frac{\partial u}{\partial s} \right] + \frac{1}{2} \frac{1}{\lambda^{2}} \frac{\partial u}{\partial s} + \frac{1}{\lambda^{2}} \frac{1}{\lambda^{2}} \frac{\partial u}{\partial s}$ $=\frac{2t'}{3t'}\left[-\frac{\partial u}{\partial \delta}-\frac{\partial u}{\partial 5}\right]+\frac{y'}{y_2}\left(\frac{\partial u}{\partial \delta}\right)+\frac{z''}{z''}\left(\frac{\partial u}{\partial 5}\right)$ $= -\frac{\partial y}{\partial s} - \frac{\partial u}{\partial s} + \frac{\partial y}{\partial s} + \frac{\partial y}{\partial s}$ 50 $\therefore \chi^2 \frac{\partial 4}{\partial \chi} + y' \frac{\partial 4}{\partial y} + z' \frac{\partial 4}{\partial z} = 0.$

Chapter-2:4 [Jacobians]

 $\frac{No(z)}{\partial (x,v)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \end{vmatrix} (II) \frac{\partial (u,v,w)}{\partial (x,y,z)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial z} \\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial z} \end{vmatrix}$

29

Example-Q
If
$$x = r \cos \phi$$
; $y = r \sin \phi$, then find $\frac{\partial(x, y)}{\partial(r, \phi)}$

Solution that $x = x \cos \theta$ $\frac{\partial x}{\partial x} = \cos \theta$ $\frac{\partial y}{\partial x} = \sin \theta$ $\frac{\partial y}{\partial x} = -x \sin \theta$ $\frac{\partial y}{\partial \theta} = x \cos \theta$ $\frac{\partial x}{\partial \theta} = \frac{\partial x}{\partial \theta}$ $\frac{\partial y}{\partial \theta} = \frac{\partial x}{\partial \theta}$

$$= x \cos^2 o + r \sin^2 o$$
$$= x [\cos^2 o + s \sin^2 o]$$

 $= \gamma(v)$

= 811

Example - (2)
If
$$x = uv$$
, $y = \frac{u}{v}$, then find $\frac{\partial(x,y)}{\partial(u,v)}$.

Solur:
Given that
$$x = uV$$
 $g = 4V$
 $\frac{\partial x}{\partial u} = V$ $\frac{\partial y}{\partial u} = 4V$
 $\frac{\partial x}{\partial v} = u$ $\frac{\partial y}{\partial v} = -4V$
 $\frac{\partial y}{\partial v} = -4V$

Example-(3) If x = u(1+v), y = v(1+u), find $\frac{\partial(x,y)}{\partial(y,v)}$. Solul

Criber that
$$x = u(1+v)$$
 $y = v(1+u)$
 $x = u+uv$ $y = v+uv$
 $\frac{\partial x}{\partial u} = 1+v$ $\frac{\partial y}{\partial u} = v$
 $\frac{\partial y}{\partial v} = u$ $\frac{\partial y}{\partial v} = 1+u$

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
$$= \begin{vmatrix} 1+v & u \\ v & 1+u \end{vmatrix} = (1+v)(1+u) - uv$$
$$= 1+u+v+uv - uv$$
$$\frac{\partial(x,y)}{\partial(u,v)} = 1+u+v \bigwedge$$

-

(31)

$$\frac{F(\alpha m p)e - \omega}{zf x = rsin o \cos \phi, \ y = rsin o \sin \phi, \ z = r \cos \phi}$$

then find $\frac{\partial(x, y, z)}{\partial(r, o, \phi)} = ?$

Solut:
Given
$$x = x \operatorname{Sino} \operatorname{cop} \left| \begin{array}{c} y = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial x}{\partial r} = \operatorname{Sino} \operatorname{cop} \phi \\ \frac{\partial y}{\partial r} = \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial y}{\partial r} = x \operatorname{cop} \circ \operatorname{Sin} \phi \\ \frac{\partial y}{\partial r} = x \operatorname{cop} \circ \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{cop} \circ \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{cop} \circ \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{cop} \circ \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial y}{\partial 0} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sino} \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} = x \operatorname{Sin} \phi \\ \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial$$

- VSINO Sing - Sino Con ¢ Sino Sin¢ Coso rano conp reino Cosp O r Coso Simp - 8 Sin O

 $= 5in0\cos\phi \left[0 + 8^{2}sin^{2}o\cos\phi - 8\cos\phi \left[0 - 8sin \cos\phi \cos\phi \right] - 8sin \cos\phi \cos\phi \right] - 8sin \cos\phi \left[-8sin \cos\phi - 8sin \cos\phi - 8sin \cos\phi \right]$

= $r^2 \sin^3 \omega \cos^2 \phi + r^2 \sin^2 \omega \cos^2 \omega \cos^2 \phi + r^2 \sin^2 \omega \sin^2 \phi$ + 2 5 m 0 cos 2 3 in 2 g $= \sigma^{2} \sin^{2} \Theta \left[\cos \phi + \sin^{2} \phi \right] + \sigma^{2} \sin \Theta \left[\cos \phi + \sin^{2} \phi \right]$ $= \gamma^2 \sin^2 \Theta(1) + \gamma^2 \sin \Theta(\omega^2 \Theta(1))$ $= \gamma^2 \sin^3 \theta + \gamma^2 \sin \theta \cos^2 \theta$ $= \sigma^2 \sin \theta \left[\sin^2 \theta + \cos^2 \theta \right]$

= r'sino[1]

 $\frac{\partial(x,y,z)}{\partial(x,o,\phi)} = \frac{1}{\sqrt{2}} \sin \frac{1}{2} \int \frac{\partial f(x,o,\phi)}{\partial f(x,o,\phi)} dx$

Example (9)

$$Tf U = \frac{yz}{x}, V = \frac{zx}{y}, W = \frac{xy}{z}, find \frac{\partial(u, v, w)}{\partial(x, y, z)}$$

$$foln:$$

$$Curven U = \frac{yz}{x^{2}} | V = \frac{zx}{y} | W = \frac{zy}{z}$$

$$U_{x} = -\frac{yz}{x^{2}} | V_{x} = \frac{z}{y} | W_{x} = \frac{y}{z}$$

$$U_{y} = \frac{z}{x^{2}} | V_{y} = \frac{-2x}{y^{2}} | W_{y} = \frac{xy}{z^{2}}$$

$$U_{z} = \frac{y}{x} | V_{z} = \frac{z}{y} | W_{z} = \frac{zy}{z^{2}}$$

$$To found: \frac{\partial(u, v, w)}{\partial(x, y, z)} = | U_{x} U_{y} U_{z} | \\W_{x} W_{y} W_{z} | \\W_{y} W_{z} W_{z} | \\W_{y} W_{z} W_{z} | \\W_{y} W_{z} W_{z} | \\W_{y} W_{z} | \\W_{y} W_{z} | \\W_{y} W_{z} | \\W_{z} W_{z} | \\W_{z} W_{z} | \\W_{z} | \\W_{z} W_{z} | \\W_{z} W_{z} | \\W_{z} | \\W_{z} W_{z} | \\W_{z} | \\W_$$

$$= \frac{1}{x^{2}y'z^{2}} \begin{vmatrix} -yz & xz & xy \\ yz & -zx & xy \\ yz & xz & -xy \end{vmatrix}$$

= $x'y'z^{2} \begin{vmatrix} -1 & 1 & 1 \end{vmatrix}$

$$\begin{array}{c|c} x^{2}y^{2}z^{2} & | & | & | \\ & | & | & | \\ \end{array} \\ = (1) \left[-1(1-1) - 1(-1+1) + 1(1+1) \right] \\ = \left[0 - 1(-2) + 1(2) \right] = 2+2 = 4 \\ \end{array} \\ = 4 \\ \end{array}$$

Example-6 If U = x + y + z, V = x y + y z + zx, $W = x^2 + y + z^2$ then find $\frac{\partial(\mathcal{U}, \mathcal{V}, \mathcal{W})}{\partial(\mathcal{X}, \mathcal{Y}, z)} = ?$ Given U = 2C + .9 + Z $U_{x} = 1$ $U_{y} = 1$ $U_{z} = 1$ $U_{z} = 1$ $V_{z} = 2 + Z$ $V_{z} = 2 + Z$ Solur $\frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{bmatrix} -U_{x} & U_{y} & U_{z} \\ V_{x} & V_{y} & V_{z} \end{bmatrix}$ $\begin{bmatrix} W_{x} & W_{y} & W_{z} \end{bmatrix}$ To find? $= \begin{vmatrix} 1 & 1 \\ g_{12} & \chi_{12} & y_{1x} \\ g_{1x} & g_{2y} & g_{2z} \end{vmatrix}$ $= 2 \left| \begin{array}{c} 1 & 1 \\ 9+2 & 2+2 \end{array} \right|$ =2[+(7+2-2)-1(4+2 $= 2 \int \left[\left(\xi(+z) z - y(x+y) \right) - 1 \left[z(y+z) - x(x+y) \right] \right]$ +i[y(y+z)-x(x+z)]y = 2 f 9 x + z - 2 y - y - y - y - z + x + xy + 4×+4/2 - 22-2/23 = 2(0) J=2/1

34)

$$\frac{Chapter_{3} \cdot 5}{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + k f_{y}(a,b)]}$$

$$\frac{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + k f_{y}(a,b)]}{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + k f_{xy}(a,b)]}$$

$$\frac{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + k f_{xy}(a,b)]}{f(x_{1}y) + k f_{xy}(a,b) + k^{2} f_{yy}(a,b)]}$$

$$\frac{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + 2h k f_{xy}(a,b)]}{f(x_{1}y) + k f_{yy}(a,b)}$$

$$\frac{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + 2h k f_{xy}(a,b)]}{f(x_{1}y) + 2h k f_{xy}(a,b)} + k^{2} f_{yy}(a,b)]}$$

$$\frac{f(x_{1}y) = f(a,b) + [h f_{x}(a,b) + 2h k f_{xy}(a,b)]}{f(x_{1}y) + 2h k f_{xy}(a,b)} + k^{2} f_{yy}(a,b)]}$$

. AP

Soln!

Expand e sing in powers of x and y after third degree terms by aging raybur's series.

Criter that $f(x,y) = e^{x} sites, \text{ Here } a = 0$ and $h = x - a \ a \ k = y - b$ $h = x - a \ a \ k = y - 0$ $h = x - a \ a \ k = y - 0$ $\boxed{h = x} \ a \ \boxed{k = y}$ W - k - T $\boxed{e^{-1}} \ (sinc) = 0 \ (cosco) = 1$

		36)
$f(x,y) = e^{x} giny$	$f(0,0) = e^{\circ} G_{m}(0) = 0$	
$f_{x}(x,y) = e^{x} g in y$	$f_{\mathcal{H}}(u,v) = e^{v} \operatorname{Sim}(v) = 0$	
$f_{y}(x,y) = e^{x} \cos y$	$f_{y}(u, o) = e^{\circ} (uy(o)) = 1$	
$f_{3(x}(x,y) = e^{x} siny$	$f_{XX}(0,0) = e^{i} Gim(0) = 0$	
$f_{xy}(x,y) = e^x cyy$	$f_{xy}(0,0) = e^{\circ}(0,0) = 1$	
$(x,y) = -e^{2}Gimy$	$fyy(0,0) = -e^{2}Sin(0) = 0$	
$f_{2(xx}(x)) = e^{2} Simy$	$\int f(v,v) = e^{\circ} Sim(0) = 0$	
$f_{XXY}^{(N,Y)} = e^{\chi} Cyy$	$f_{xxy}(0,0) = e^{\circ}(0,0) = 1$	
$f_{ygx}(x_{iy}) = -e^{2i}Giny$	$f_{99}(2,2) = -e^{2} Sin(2) = 0$	
$f_{yy}(x,y) = -e^{2t} \cos y$	$f_{999}(22) = -e_{00}(250) = -1$	

Toyclor's theorem, $f(x,y) = f(a,b) + [h f_{x}(a,b) + k f_{y}(a,b)]$ $+ 1/2 [h² f_{xx}(a,b) + 2 hk f_{xy}(a,b) + k² f_{yy}(a,b)]$ $+ 1/6 [h³ f_{xxx}(a,b) + 3 h k f_{xxy}(a,b) + 3 hk f_{xyy}(a,b) + k³ f_{yyy}] + --$ = (0) + [9((0) + y(1)] + 1/2 [x² (0) + 2xy(1) + y³ (0]+ 1/6 [x³ (0) + 32² y(1) + 3xy² (0) + y² (-1)]

$$f(x,y) = 0 + [0+y] + \frac{1}{2} \left[0 + 2xy + 0 \right] + \frac{1}{2} \left[0 + \frac{1}{2}x^{2}y + 0 - y^{3} \right]$$

$$= \frac{y + \frac{1}{2} \left[2xy + 0 \right] + \frac{1}{2} \left[\frac{y^{3}}{6} \right]$$

$$= \frac{y + xy + \frac{1}{2} \frac{x^{2}y}{2} - \frac{y^{3}}{6} \right]$$

$$= \frac{y + xy + \frac{x^{2}y}{2} - \frac{y^{3}}{6} \right]$$

$$= \frac{1}{2xgmnnle - (2)}$$

$$E x pand \cdot e^{x} (xyy about (0, n/2) wplo + \frac{1}{2}) d d d g lee$$

$$\frac{1}{2ylor's selies}.$$

$$= \frac{1}{20}$$

$$\frac{1}{16} \frac{1}{16} \frac{1}{1$$

37)

	538
$f(x,y) = e^{\chi} \cos y$	$f(0, N_2) = e^{\circ} \cos N_2 = 0$
$f_{\mathbf{x}}^{(\mathbf{x},\mathbf{y})} = e^{\mathbf{x}} \cos \mathbf{y}$	$f_{11}(0, M_{L}) = e^{\circ} G_{11} M_{2} = 0$
$\int_{\mathcal{Y}} (x, y) = -e^{x} Simy$	$f_{y}(v, \overline{y}_{1}) = -e^{\circ} \operatorname{Sub}(\overline{y}_{2} = -)$
$f_{\mathcal{D}(\mathcal{X},\mathcal{Y})} = e^{\mathcal{X}} \cos \mathcal{Y}$	$f_{XX}(v, 0/2) = e^{\circ} C y \pi/2 = 0$
$f_{xy}(x,y) = -e^{\chi} gin y$	$f_{52cy}(0,0/c) = -e^{\circ} Sin 1/2 = -1$
$f_{yy}(x,y) = -e^{x} \cos y$	$f_{yy}(v, \overline{v}_{\ell}) = -\hat{e} \cdot \hat{\omega} \cdot \hat{v}_{\ell} = 0$
$f_{xxx}^{(x,y)} = e^{x} \cos y$	$f_{XXX}(U,M_c) = \mathcal{C}(U)M_2 = 0$
$f_{xxy} = -e^{x} g_{my}$	$f_{XXY}(v, \mathcal{W}_{L}) = -e^{\varepsilon} Sim \mathcal{W}_{L} = -)$
$f_{\mathcal{D}(\mathcal{Y}\mathcal{Y})} = -e^{\chi} \omega \mathcal{Y}$	$f_{xyy}(v; \overline{v}_{k}) = -e^{\omega}(w) \overline{v}_{k} = 0$
$f(x,y) = e^{2l} Sully$	$f_{949}(0, 0/2) = e^{0} \sin 0/2 = 1$

60)

Taylor's Sellesf(x,y) = f(0,b) + [h fr(a,b) + x fy(a,b)] + (x,y) = f(0,b) + [h fr(a,b) + x fy(a,b)] + (x fyy(a,b))+ 1/2 [h' fxx(a,b) + 2hk fry(a,b) + k fyy(a,b)]+ 1/6 [h' frxx(a,b) + 3h'k fry(a,b) + 3hk fxxy(a,b) + x fyy(a,b)]= 0 + [9((0) + (y - 1/2)(-)] + 1/2 [x'(u) + 2(x)(y - 1/2)(-1) + (y - 1/2)(u)] $+ 1/6 [x^{2}(u) + 3x'(y - 1/2)(-)] + 3x(y - 1/2)^{2}(u) + (y - 1/2)^{2}(u)]$

	39)
$= o + [o - (y - \pi)_2]$	2)] +1/2[0 + 2× (y-0/2) +0]
	$3x^{2}(y-n/2) + 0 + (y-n/2)^{2}$
= - 4+ 1/2 + 1/2	$(-2x)(y-0/2) + 1/6 [-3x^{2}(y-0/2) + (y-0/2)^{2}]$
	$(y - 5/2) - 3/6 2c^{2}((y - 5/2)) + 1/6 ((y - 5/2))^{2}$
Example-3 obtains the	Jaylor's Beries of x3+y3+xy2 in
Powers uf (x-1) and (y	1-2).
Solui Croven that fix.	$y) = \pi^3 + y^3 + \pi y^2$ and $[\alpha = 1] \& [b = 2]$
Here h=x-1 d	k=y-2
$f(x,y) = 2c^{3} + y^{3} + 2cy^{2}$	$\oint (1/2) = (1)^2 + (2)^2 + (1/2)^2 = 13$
$f_{x}(x, y) = 3x^{2} + y^{2}$	f(1,2) = 3(1) + (2) = 374 - 1
$f_{y}(x,y) = 3y^{2} + 2xy$	$f_{y}(12) = 3(2)^{2} + 20(2) = 12 + 4 = 16$
$f_{XX}(X,Y) = GX$	$f_{xx}(112) = 6(0) = 6$
$f_{xy}(x,y) = 2y$	$f_{xy}(1_{12}) = 2(2) = 4$
$f_{yy}(x,y) = 6y + 2x$	$f_{yy}(1,2) = 6(2) + 2(1) = 12 + 2 = 14$
$f_{xxx}(x,y) = 6$	$f_{XXX}(1) = 6$
$f_{\chi)(y} = 0$	$f_{XXY}(1,2) = 0$
$f_{xyy}^{(x,y)} = 2$	$f_{xyy}(0,2) = 2$
$f_{yyy}(x,y) = 6$	$b_{34y}(112) = 6$

ŕ,

(*)

$$f(x,y) = f(a,b) + [hf_{x}(a,b) + kf_{y}(a,b)] + \frac{1}{2} [hf_{xx}^{(a,b)} + hkf_{xy}^{(a,b)} + kf_{yy}^{(a,b)}]$$

$$+ \frac{1}{6} [hf_{xxx}^{(a,b)} + 3hkf_{xf_{xy}^{(a,b)}} + 3hkf_{xyy}^{(a,b)} + \frac{1}{6} f_{yyy}^{(a,b)}]$$

$$= 13 + [f_{x-1})(7) + (y-2)(16)] + \frac{1}{2} [f_{x-1})^{2}(6) + (x-1)(y-2)(b) + (y-2)^{2}(b)]$$

$$+ \frac{1}{6} [f_{x}^{(-1)}]^{2}(6) + 3(x-1)^{2}(y-2)(0) + 3(x-1)(y-2)^{2}(2) + (y-2)^{2}(6)].$$

$$= 13 + 7(x-1) + 16(y-2) + \frac{1}{2} [6(x-1)^{2} + 4(x-1)(y-2) + 14(y-2)^{2}]$$

+ 1/6 [6(x-1)^{3} + 0 + 6 (x-1)(y-2)^{2} + 6(y-2)^{2}]

 $f(x,y) = 13 + 7(x-1) + 16(y-2) + 3(x-1)^{2} + 2(x-1)(y-2) + 7(y-2)^{2}$ $+ (x-1)^{3} + (x-1)(y-2)^{2} + (y-2)^{2}$

Example- (i)
Expand
$$x^2y^2 + 2x^2y + 32xy^2$$
 in powers of
 $(x+2)$ and $(y-1)$ asing $\pi aylon's$ series apto third
degree terms.
Solvi: (riber that $f(x,y) = x^2y^2 + 2x^2y + 32xy^2$
and $h = x+2$ & $[k = y-1]$
Here $a = -2$. $b = 1$)

$$\begin{aligned} f(x,y) &= 2x^{2}y^{2} + 2x^{2}y + 32(y^{2})^{2} \\ f(-2,1) &= (2^{2})^{1}(y^{2} + 2(-2^{2})^{1}(y) + 3(-2)^{1}(y)^{2} \\ &= A + 8 - 6 = 6 \end{aligned}$$

$$\begin{aligned} f_{x}(x,y) &= 2xy^{2} + 4xy + 3y^{2} \\ f_{x}(-2,1) &= 2(-2)^{1}(y^{2} + 4(-2)^{1}(y) + 3(-1)^{1} \\ &= -4 - 8 + 3 = -9 \end{aligned}$$

$$\begin{aligned} f_{y}(-2,1) &= 2(-2)^{1}(y^{2} + 2(-2)^{2} + 6(1)^{1}(-2) \\ &= 8 + 8 - 12 = 4 \end{aligned}$$

$$\begin{aligned} f_{xx}(-2,1) &= 2(-2)^{1}(y^{2} + 4(-2) + 6(1) \\ &= -8 - 8 + 6 = -10 \end{aligned}$$

$$\begin{aligned} f_{xy}(-2,1) &= 2(-2)^{1} + 4(-2) + 6(-1) \\ &= -8 - 8 + 6 = -10 \end{aligned}$$

$$\begin{aligned} f_{xy}(-2,1) &= 2(-2)^{1} + 6(-2) + 6(-1) \\ &= -8 - 8 + 6 = -10 \end{aligned}$$

$$\begin{aligned} f_{xy}(-2,1) &= 2(-2)^{1} + 6(-2) + 6(-1) \\ &= -8 - 8 + 6 = -10 \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= 2(-2)^{1} + 6(-2) + 6(-2) \\ f_{xy}(-2,1) &= 2(-2)^{1} + 6(-2) + 6(-2) \\ f_{xxy}(-2,1) &= 2(-2)^{1} + 6(-2) + 6(-2) \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= 0 \\ f_{xxy}(-2,1) &= -6(-2) \\ f_{xyy}(-2,1) &= -8 + 6 = -2 \\ f_{xxy}(-2,1) &= -8 + 6 = -2 \\ f_{yyy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= 0 \\ f_{xxy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= -8 + 6 = -2 \\ f_{yyy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= -8 + 6 = -2 \\ f_{yyy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xyy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} f_{xxy}(-2,1) &= 0 \\ \end{aligned}$$

$$\begin{aligned} &= 6 + \left[\left\{ e^{2}\right\} \left[(1+2) + A(1y-1) \right] + \frac{1}{2} \left[6(x+2)^{2} - 20(x+2)(y-1) + 1A(y-1)^{2} \right] \\ &+ \frac{1}{6} \left[0 + \frac{1}{2} A(x+2)^{2} (y-1) - 6(x+2)(y-1)^{2} + 0 \right] \\ &= 6 + 9x - 18 + Ay - 4 + \left[3(x+2)^{2} - 10(x+2)(y-1) + 7(y-1)^{2} \right] \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int f(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1) + 7(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= -16 - 9x - Ay + \frac{1}{3} (x+2)^{2} - 10(x+2)(y-1)^{2} \\ &+ A(x+2)^{2} (y-1) - (x+2)(y-1)^{2} \end{aligned}$$

$$\begin{aligned} &\int F(x, y) &= e^{2x} Ay - 2x + 2x - 2x + 2x \end{aligned}$$

$$\begin{aligned} \begin{cases} f(1,y) &= e^{\chi} \log(1+y) \\ f(0,y) &= e^{\chi} \log(1+y) \\ &= e^{\chi} \log$$

Taylor's series

Ξų,

$$f(1,1,4) = f(a,b) + [hils(a,b) + k fy(4,b)]$$

$$+ \frac{1}{2} [h^{2} f_{XX}(4,b) + 2hk f_{Xy}(4,b) + k f_{yy}(4,b)]$$

$$+ \frac{1}{6} [h^{3} f_{XX}(a,b) + 3h^{2} k f_{XX}(a,b) + 3hk f_{Xy}(4,b)]$$

 $f(x,y) = 0 + [x(0) + y(0)] + \frac{1}{2} [x'(0) + 2xy(1) + y'(-1)]$ $+\frac{1}{6}\left(x^{3}(0)+3x^{2}y(1)+3xy^{2}(1)+y^{3}(2)\right)$ $= 0 + [0+y] + \frac{1}{2} [0 + 2xy - y^2]$ +16[0+3249-3242+243] $= y + \frac{1}{2} \left[2xy - y' \right] + \frac{1}{6} \left[3x'y - 3xy' + 2y' \right]$ $= y + xy - \frac{y}{2} + \frac{y}{2} x^2 y - \frac{y}{2} xy^2 + \frac{y}{3} y^3$ $f(x,y) = y + xy - \frac{y}{2} + \frac{y^2}{2} - \frac{y(y)}{2} + \frac{y^3}{3} \parallel$

AA

Chapter-3.6

Maximor And Minima For the Functions
of Two variables.
Procedure to find the maxima and minima of f(x,y)
Step-1 Find the for & by and Equal to zero
ie, fre=0 & fy=0. We get the solution
Print (a, b)
Step-2 Next to find A = from ; B = fry
and $C = fyy$
<u>Step-3</u> To find the value $\nabla = AC - B^2$.
(i) If $\nabla > 0$ and $A \angle 0$, then $f(x_1, y)$ is maximum at (q, b)
(i) If V>0 and A>0, then f(x,y) is minimum at (9,6)
iii) If VLO, then f(X,y) is saddle Point
iv) It V = 0, then nothing is known and buther investigation is required.

$$F.xample - 12$$
Find the maxima and minima of
 $f(x,y) = x^3 + y^2 - 3x - 12y + 20.$
Solm:
Griven that $f(x,y) = 2x^3 + y^3 - 3x - 12y + 20.$
 70 find Glationary Points: -
 $f_{2x} = 3x^2 - 3$ & $f_{2y} = 3y^2 - 12$
 $f_{2x} = 0 \Rightarrow 3x^2 - 3 = 0$ $f_{2y} = 0 \Rightarrow 3y^2 - 12 = 0$
 $3x^2 = 3$
 $x^2 = 3/3$
 $x^2 = 1/3$
 $y = 4$
 $y = 2 = 2$
 $y = 2 = 2$

The stationary points are, (1,2),(1,-2),(-1,2),(-1,-2)and $f_{XX} = 6X$ | $f_{XY} = 0$ | $f_{YY} = 6y$ A = 6X | B = 0 | C = 6y (46)

Points	A = 6x	B=0	C = Gy	$\nabla = AC - B^2$	
(1,2)	A = 6(1) $A = 6$	ß = 0	C = 6(2) C = 12	$\nabla = 6(12) - 0$ $\nabla = 72 > 0$	
(1, -2)	A = 6(i) $A = 6$	B=0	C = 6(-2) = -12	$\nabla = 6(-12) - 0$ $\nabla = -72 \ 20$	
(-1,2)	A = 6(-1) = = 6	B=0	C = G(2) $= 12$	$\nabla = (6)(12) - 0$ $\nabla = -72 \ 20$	
(-1,-2)	A = 6(-1) $= -6$	B=0	C = 6(-2) = -12	$ \nabla = (-6)(-12) - 0 $ $ \nabla = 72 > 0 $	

AD

(1) The Point (1,2) have
$$\forall > 0 \ d \ A \neq 0$$
.
... It is minimum point
 $f(x,y) = 2c^3 + y^2 - 37(-12y + 20)$
 $f(1,2) = (2)^2 + (2)^3 - 3(1) - 12(2) + 20$
 $= 1 + 8 - 3 - 24 + 20$
 $f(1,2) = 2$ is minimum value.

(11) The point (-1,-2) have
$$\nabla >0$$
 & ALO.
 \therefore It is maximum point.
 $f(x,y) = x^{2} + y^{2} - 3x - 12y + 20$
 $f(-1,-2) = (-1)^{2} + (-2)^{2} - 3(-1) - 12(-2) + 20$
 $= -1 - 3 + 3 + 24 + 20$
 $f(-1,-2) = 38$ is maximum value.
Example-@
Find the minimum point of $f(x,y) = x^{2} + y^{2} + 6x + 12$.
Solu:
(niven that $f(x,y) = x^{2} + y^{2} + 6x + 12$.
 $TO \quad find \quad Stationary \quad Points: -$
 $fx = 2x + 6$ $d \quad fy = 2y$
 $fx = 0 \Rightarrow 2x + 6 = 0$
 $2x = -6$
 $x = -6/2$
 $fx = -3$
The point is $(-3z0)$
then, $f_{11x} = 2$
 $f^{32} = 0$
 $f^{32} = 0$

At the public (-3,0)

$$\nabla = A C - B^{2}$$

 $= 2(2) - 0$
 $\overline{\nabla = 4} > 0$ and $\overline{A = 2} > 0$
Hence the point (-3,0) is minimum point.
 $f(31,9) = 3c^{2} + 9^{2} + 6x + 12$
 $f(-3,0) = (-3)^{2} + 0 + 6(-3) + 12$
 $= 9 - 18 + 12$
 $= 21 - 18$
 $\overline{f(-3,0)} = 3$ is minimum value.

H9

$$Fx comple - ③
Fx comple - ④
Fx amine $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$
for sxtrenae values.
Solur: Griven that $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$.
To find Stationary Points:
 $f_n = 3x^2 + 3y^2 - 30x + 72 \notin f_y = 6yx - 30y$
 $f_x = 0 \implies 3x^2 + 3y^2 - 30x + 72 = 0$
 $3(x^2 + y^2 - 10x + 24) = 0, \longrightarrow ④$$$

(5)
and
$$fy=0 \Rightarrow 6xy-30y=0$$

 $6y(x-5)=0 \longrightarrow 0$
 $fum @ \Rightarrow 6y(x-5)=0$
 $gy=0 \text{ and } x-5=0$
 $[y=0] \text{ and } [x=5]$
When $[y=0] \text{ in } g_{1}(0)$
 $0 \Rightarrow x^{2}+y^{2}-10x+2h=0$
 $x^{2}+0-10x+2h=0$
 $x^{2}+0-10x+2h=0$
 $x^{2}-10x+2h=0$
 $(x-h)(x-6)=0$
 $x-h=0 | x-6=0$
 $[x=4] | x=6]$
When $[9x=5] \text{ in } g_{1}(0)$
 $(1 \Rightarrow x^{2}+y^{2}-10x+2h=0)$
 $(5)^{2}+y^{2}-10x+2h=0$
 $(5)^{2}+y^{2}-10x+2h=0$
 $25+y^{2}-50+2h=0$
 $y^{2}-1=0$

y' = 1 $y' = \pm 1$

					\sim
The stationary Points are (4,0), (6,0), (5,1) (5,-1)					
then	$a_{\mu} = 6x - \frac{1}{2}$	30 ; fay	=64 ; f	yy = 6x - 30	
A = 6x - 30; $B = 6y$; $C = 6x - 30$					
Prints	A=6x-30	B=69	C = 6x - 30	$\nabla = AC - B^2$	
(A.O)	A = 6(4) - 30 = 24 - 30 $A = -6$	B=0	C = 6(4) - 30 = 24 - 30 C = -6		
(6 , 0)	A = 6(6) - 30	0-01	C = 6(6) - 30	V = (6) (6) - 0	

y

(6, 0)	A = 6(6) - 30 = 36 - 30 A = 6	B=0]	C = 6(6) - 30 = 3 6 - 30 C = 6	
(5,1)	A = 6(5) - 30 = 30 - 30 A = 0	B = 6(1) $B = 6$	C = 6(3) - 30 = 30 - 30 C = 0	$\nabla = 0 - (6)^2$ $\left[\nabla = -36 \right] \neq 0$
(5, -1)	A = 6(5) - 30 = 30 - 30 A = 0	B = 6(-1) B = -6	C = 6(5) - 30 = 30 - 30 C = 0	$\nabla = 0 - (6)^2$ $\nabla = -36 / 20$

61)

Here the Purints (5,-1), (5,1) have 720

52)

... It is saddle Points

(i) The Point (4,0) have
$$\forall >0$$
 and $A \ge 0$
 $= 2t$ is maximum Point
 $f(x,y) = x^3 + 3x y^2 - 15x^2 - 15y^2 + 72x.$
 $f(4,0) = (4)^3 + 3(4)(0) - 15(4)^2 - 15(0) + 72(4)$
 $= 64 + 0 - 15(16) - 0 + 288$
 $= 64 - 240 + 288$
 $\overline{b(4,0)} = 112$ is measimum value.
(i) The Point (6,0) have $\forall >0$ and $A > 0$
 $= 2t$ is minimum Point
 $f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$
 $f(6,0) = (6)^8 + 3(6)(0) + 15(6)^2 - 15(0) + 72(6)$
 $= 216 + 0 - 15(36) - 0 + 432$
 $= 216 - 540 + 432$
 $\overline{b(6,0)} = 108$ is minimum value.

Find the maximum or minimum values of

$$f(x, y) = 3x^2 - y^2 + x^3$$

Solver that $f(x, y) = 3x^2 - y^2 + x^3$
To find attionary points:-
 $f_x = 6x + 3x^2$ and $by = -2y$
 $f_x = 0 \Rightarrow 6x + 3x^2 = 0$
 $3x(2+x) = 0$
 $5x = 0; 2+x = 0$
 $f_x = 0; (x = -2)$
 $f_x = 0; (x = -2)$

and
$$f_{XX} = 6 + 6X$$
 | $f_{XY} = 0$ | $f_{YY} = -2$
 $A = 6X + 6$ | $B = 0$ | $C = -2$

A = 6x+6

Points

(i) (b, 0) A = 0+6 B=0 C=-2 V = 6(-2)-0A=6 $V=-12 \ge 0$

B=0

(51) (2,0)

$$A = 6(-2) + 6 \qquad B = 0 \qquad C = -2 \qquad Y = -6(-2) - 0 = -12 + 6 \qquad \nabla = 12 > 0 A = -6$$

1

C = -2 $\nabla = AC - B^2$

(i) The point (0,0) have the value
$$\forall x.0$$

.: Et is gaddle point
(ii) The point (-2,0) have $\forall >0$ and $A \ge 0$
.: $t + us$ maximum point
 $f(x,y) = 3x^2 - y^2 + x^3$
 $f(-2,0) = 3(-2)^2 - (0) + (-2)^3$
 $= 3(4) - 8$
 $= 12 - 8$
 $f(-2,0) = 4$
Example (3) Find the maxima and minima value
 $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$.

Solution Given that $f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$ To find the stationary point: $f_x = 4x^3 - 4x + 4y$ d $f_y = 4y^3 + 4x - 4y$ $f_x = 0 \Rightarrow 4x^3 - 4x + 4y$ d $f_y = 0 \Rightarrow 4y^3 + 4x - 4y = 0$ $4(x^3 - 20x + 4y) = 0$ $4(y^3 + x - 4y) = 0$ $x^3 - x + 4y = 0$ $y^3 + 2x - 4y = 0$ $x^3 - x + 4y = 0$ $y^3 + 2x - 4y = 0$ Adeling $(0 \ d \ (0 + 2)) \Rightarrow x^3 - x^2 + 4y^2 + 4y^3 + 2x^2 + 4y^2 = 0$ $x^3 - y^3 = 0$ $x^3 - y^3 = 0$ $x^3 - y^3 = -y^3$ $x^3 = -y^3$ $x^3 = -y^3$ $x^3 = -y^3$

65)

ofe	Points are	(0,0)(52,-)	52), (-52, 52)
frex	$=12x^{2}-4$	$f_{NY} = 4$	8 4 4 7 4 7 4
A=	= 12x - 4	13 = 4	$c = 12y^{2} - 4$

				and the second
points	A=125c-4	B=4	$C = 12\tilde{y} - 4$	$\nabla = AC - B^2$
(*) Co,v)	A = 0 - 4 $A = -4$	<u>B=4</u>	$C = 0 - 4$ $\boxed{C = -4}$	$ \nabla = (-4)(-4) - (4)^{2} $ $ \nabla = 16 - 16 = 0 $ $ \nabla = 0 $
(fi) (2, -J2)	$A = 12(52)^{2} - 4$ = 12(2) - 4 = 24 - 4 A = 20	<u>B=4</u>	$C = 12(-\sqrt{2})^{2} - 4$ = 12(2) - 4 = 24 - 4 $\sum_{k=20}^{\infty}$	$\nabla = (20)(20) - (4)^2$ = $400 - 16$ $\nabla = 384 > 0$
(ri)(-J2, J2)	$A = 12(-\sqrt{2})^{2} - 4$ = 12(2) - 4 = 24 - 4 A = 20	B=4)	C = 12(x) - 4 = 12(2) - 4 = 24 - 4 [C = 20]	$\nabla = (20)(20) - (4)^{L}$ = 400 - 16 $\nabla = 384 > 0$

The point (0,0) have the value
$$\nabla = 0$$

... It is saddle point.
(1) The point (2, -52) have the value $\nabla >0$ and $A > 0$
... It is minimum point
 $f(3,9) = x^{4} + y^{4} - 2x^{2} + Axy - 2y^{2}$
 $f(52, -52) = (52)^{4} + (52)^{4} - 2(52)^{4} + 4(52)(-52) - 2(-52)^{2}$
 $= 4 + 4 - 2(2) + 4(-2) - 2(-52)^{2}$
 $= 8' - 4 - 8' - 4$
 $\int f(52, -52) = -8 \int$
(11) The point (-52, 52) have the value of $\nabla >0$ and $A > 0$
 \therefore It is minimum point
 $f(3,9) = x^{4} + y^{4} - 2x^{2} + Axy - 2y^{2}$
 $f(-52, 52) = (-52)^{4} + (-2)^{4} - 2(-52)^{5} + 4(-52)(52) - 2(-52)^{5}$
 $= 4 + 4 - 2(2) + 4(-2) - 2(-2)^{2}$
 $= 4 + 4 - 2(2) + 4(-2) - 2(-2)^{2}$
 $= 5 - 4 - 8 - 4$
 $\int f(-52, 52) = -8 \int$

(56)

Example-@ Descuss the massima and minima value
of
$$f(2iy) = x^3y^2(1-x-y)$$
.
Solur
Given $f(x,y) = x^3y^2(1-x-y)$
 $g(x,y) = x^3y^2 - x^4y^2 - x^3y^3$
To find stationary points:-
 $fx = 3x^4y^2 - 4x^3y^2 - 3x^4y^3 = 0$
 $gx^2y^2(3-4x-3y) = 0$
 $3-4x-3y = 0$
 $4x + 3y - 3 = 0$
 $yx^3(2-2x-3y) = 0$
 $yx^3(2-2x-3y) = 0$
 $2-2x - 3y = 0$
 $g(x+3y-2) = 0$
 $y(x)^3(2-2x-3y) = 0$

(37)

3x - 1 = 0 3x = 1 $\int x = \frac{1}{2}$

$$\begin{array}{l} p_{ul} \left[\overline{x} = Y_{1} \right] & \text{in } 2q_{1} (\overline{c}) \\ (\overline{c}) = 2x + 3y - 2 = 0 \\ g((Y_{2}) + 3y - 2 = 0 \\ 1 + 3y - 2 = 0 \\ 3y - 1 = 0 \\ 3y = 1 \implies \overline{y} = \overline{y} = \overline{y} \\ \overline{y} = \overline{y} \\ \overline{y} = 1 \implies \overline{y} = \overline{y} \\ \overline{y} = -\overline{y} \\ \overline{y} = 1 \implies \overline{y} = \overline{y} \\ \overline{y} = -\overline{y} \\ \overline{y} = 1 \\ \overline{y} = \overline{y} \\ \overline{y} = -\overline{y} \\ \overline{y} \\ \overline{y} = -\overline{y} \\ \overline{y} \\ \overline{y}$$

 $B = f_{xy} = 6x^{2}y - 8x^{3}y - 9x^{2}y^{2}$ $B = 6(\frac{1}{2})^{2}(\frac{1}{3}) - 8(\frac{1}{2})^{3}(\frac{1}{3}) - 9(\frac{1}{2})^{2}(\frac{1}{3})^{2}$ $= \frac{2}{6}(\frac{1}{2})(\frac{1}{3}) - \frac{8(\frac{1}{2})(\frac{1}{3})}{2} - \frac{9(\frac{1}{4})(\frac{1}{4})}{2}$ $= \frac{1}{2} - \frac{1}{3} - \frac{1}{4}$ $\overline{B} = -\frac{1}{12}$

$$C = \int_{1}^{1} yy = 2x^{3} - 2x^{4} - 6x^{3}y$$

$$C = 2(\frac{1}{2})^{3} - 2(\frac{1}{2})^{4} - 6(\frac{1}{2})^{3} (\frac{1}{3})$$

$$= \frac{1}{2}(\frac{1}{2}) - 2(\frac{1}{2})^{6} - \frac{1}{2}(\frac{1}{3})$$

$$= \frac{1}{4} - \frac{1}{8} - \frac{1}{4}$$

$$\int C = -\frac{1}{8}$$

$$T = AC - B^{2}$$

$$= (-\frac{1}{4})(-\frac{1}{8}) - (-\frac{1}{2})^{2}$$

$$= \frac{1}{72} - \frac{1}{144}$$

$$\int \overline{\nabla} = \frac{1}{144} > 0$$

$$T = Point (\frac{1}{2}, \frac{1}{3}) \text{ home the value of } T > 0 \text{ A } 20$$

(59)

= If is mestimum produt. $f(x,y) = x^3 y^2 (1-x-y)$ $f(y_2, y_3) = (y_2)^3 (y_3)^2 (1-y_2-y_3)$ $= (y_8)(y_9) \sum_{n=1}^{6} \frac{6-3-2}{6}$ $= \frac{1}{32} (y_6)$ $f(y_2, y_3) = \frac{1}{432}$

Chapter-2.7

Method of Lagrangian multiplier

We define $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$ The necessary conditions for mascimum or minimum. $\frac{\partial F}{\partial x} = 0$; $\frac{\partial F}{\partial y} = 0$; $\frac{\partial F}{\partial z} = 0$ Fac = 0; Fy = 0; Fz = 0.

Example -0 Find the dimensions of the rectangular box without a top of maximum Capacity, whose surface area is 108 sorm.

Solut let the given surface area us $g(x, y, z) = xy + 2xz + 2yz = 108 \longrightarrow \textcircled{}$ g(x,y,z) = x(y + 2xz + 2yz - 108)The volume is for, y, z) = xyz let as consider the Lagrangian function as $F(x,y,z) = f(x,y,z) + \lambda g(x,y,z)$ $F(x, y, z) = xyz + \lambda(xy+2xz+2yz-108) \longrightarrow \textcircled{}$ $\frac{\partial F}{\partial \chi} = yz + \lambda(y+2z); \frac{\partial F}{\partial y} = \chi z + \lambda(\chi+2z); \frac{\partial F}{\partial z} = \chi y + \lambda(z+2y)$

$$\frac{\partial F}{\partial x} = 0 \implies yz + \lambda (y + zz) = 0$$

$$\implies yz = -\lambda (y + zz)$$

$$\implies yz = -\lambda (y + zz)$$

$$\implies yz = -\lambda (y + zz)$$

$$\implies -\lambda' = \frac{y + zz}{yz} = \frac{y'}{yz} + \frac{zz'}{yz}$$

$$\int -\lambda' = \frac{y + z}{yz} = \frac{y'}{yz} + \frac{zz'}{yz}$$

 $\frac{\partial F}{\partial y} = 0 \implies \chi Z + \lambda (\chi + \partial Z)$ $\implies \chi Z = -\lambda (\chi + \partial Z)$ $\implies \chi Z = -\lambda (\chi + \partial Z)$ $\implies -\frac{1}{\lambda} = \frac{\chi + \partial Z}{\chi Z} = \frac{2\chi}{\chi Z} + \frac{\partial Z}{\chi Z}$ $\implies -\frac{1}{\lambda} = \frac{1}{\chi} + \frac{2}{\chi} = -\frac{1}{\chi} = \frac{1}{\chi}$

 $\frac{\partial F}{\partial z} = 0 \implies xy \neq \lambda(\partial x + \partial y)$ $=) \quad \gamma(y = -)(\partial x + \partial y)$ $=) -\frac{1}{3} = \frac{2x}{xy} + \frac{2y}{xy} = \frac{2x}{xy} + \frac{2y}{xy}$ $=)\left[-\frac{1}{\lambda}=\frac{2}{3}+\frac{2}{3}\left(-\right)\mathbf{G}\right]$ from O & D シニタ $\frac{2}{y} = \frac{2}{x}$ y=22/->5 2x = 29 $x = y \xrightarrow{} (4)$

from & & O

$$x = y = \partial Z \longrightarrow 0$$

 $\mathcal{E}_{\mathcal{M}} \oplus \Rightarrow xy + 2xz + 2yz = 108$ (22)(22) + 2(22) 2 + 2(22) 2 = 10842 + 42 + 42 = 108 $102^{2} = 108$ $Z^{2} = \frac{108}{12} \implies Z^{2} = 9$ $Z = \pm 3$ -: Z=3 $\mu \quad \chi = 22 \implies \chi = 2(3) \implies \chi = 6$ $y = 2z \implies y = 2(3) \implies y = 6$ The dimension of the box, x=6, y=6, z=3 Escample-2 A thin closed rectangular bose is to have one Edge Equal to twice the other and constant volume is 72 m3. Find the least surface area of the box. 50/n2 . let x, y, zy be the longth, breadth and height of the box respectively. Surfale area = 2(2) y + 2y (2y) + 2x(2y) = 2xy + Ay2 + Axy $\phi(x, y, z) = 6xy + 4y^2 \longrightarrow A$

Volume
$$(V) = : xyz = 72$$

 $xy' = 72$
 $xy' = 72/2$
 $g(x,y,z) = xy' = 36$
 $g(x,y,z) = xy' = 36 \longrightarrow 3$
Let us consider the Legrangeon function is
 $F(x,y,z) = f(x,y,z) + \lambda g(x,y,z)$
 $F(x,y,z) = (6xy + hy') + \lambda (xy' - 36)$
 $\frac{\partial F}{\partial x} = 6y + \lambda y'$
 $\frac{\partial F}{\partial y} = 0 \Rightarrow 6y + \lambda y' = 0$
 $6y = -\lambda y'$
 $G = -\lambda y$
 $\int \frac{\partial F}{\partial y} = -\lambda$
 $\int \frac{\partial F}{\partial y} = -\lambda$

64)

from @ & @, we get ら二子+会 $\frac{6}{y} - \frac{3}{y} = \frac{4}{x}$ $\frac{3}{3} = \frac{4}{3}$ $3x = 4y \implies 4y = 32$ y= 3/400/-> 3 $\mathbb{B} \Rightarrow xy = 36$ x (3/4x)=36 $(x) \frac{9}{16} x^2 = 36$ $\chi^3 = 36 \times 16$ $2c^{3} = 4 \times 16^{\circ} = 2 \times 2^{3} = 64$ $x^{2} = (4)^{3}$ x=4/ $3 = \frac{3}{4} \frac{4}{4} \quad 3 = y = \frac{3}{4} (x)$ y= 3/4 (40 => y=3] of is minimum at (4,3) The minimum surface = 6914 + 44' $= 6(4)(3) + 4(3)^{2}$ = 72 + 4(9)= 72 + 36=108/1

65)

(a)
Find the dimensions of the rectangular box
(without top of maximum capacity with surface
atum 432.54.54.
Solve the trip of maximum capacity with surface
atum 432.54.54.
Solve trip of maximum capacity with surface
atum 432.54.54.
Solve trip of the trip of the surface
of the box.
Surface are = xy + ay z + azx = 432 ->(b)
g(x, 4, z) = xy + ay z + azx = 432 ->(b)
g(x, 4, z) = xy + ay z - azx - 432
Volume.
$$f(x, y, z) = xy + 2y - 2y - 3$$
(c)
Let us consider the taglangian function is
 $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$
 $F(x, y, z) = xy z + \lambda (xy + ayz + azx - 432)$
 $\frac{\partial F}{\partial x} = yz + \lambda (y + az)$
 $\frac{\partial F}{\partial x} = 0$
 $\frac{\partial F}{\partial x} = 0$
 $\frac{\partial F}{\partial x} = 0$
 $\frac{\partial F}{\partial y} = 0$
 $\frac{\partial F}{\partial z} =$

from @ & 3 from O & D 之+美=专+美 黄ナショーガーショ $\frac{2}{4} = \frac{2}{x}$ -==== 19=22/->5 2x= 2y $|x=y| \longrightarrow \Theta$ from Das $x = y = z \longrightarrow 0$ $\mathcal{E}_{q_{1}} \oplus \Rightarrow \chi_{y+2yz+2z_{X}} = 432$ (22)(22) + 2(22) + 2(22) = 432 $A2^{2} + A2^{2} + 42^{2} = 432$ $12z^{2} = 432$ z= 432 36 z=36 $Z = \pm \frac{1}{10}$ = 2=65 by Equ @ x=22; y=22; Z=6 x = 26; y = 26; z = 6x=12 ; y=12 The dimension of the box x=12, y=12, z=6 Mascimum Volume = 2142 = (12)(12)(6) = 864 Cubic metery.

67)

Example B
Find He shortest and the longest distance
from the point
$$(1, 2, -1)$$
 to the sphere $x^{1} + y^{2} + z^{2} = 24$.
(Hing Legrange's method.
Solve:
Let (x, y, z) be any point or the sphere.
Distance of the point (x, y, z) from $(1, 2, -1)$ is
 $d^{2} = (x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2}$
 $f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2}$
 $f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2}$
 $f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2}$
 $f(x, y, z) = x^{2} + y^{2} + z^{2} - 24 = 0$
Bubgect to constraint.
 $g(x, y, z) = x^{2} + y^{2} + z^{2} - 24 = 0$
Let us consider the Lagrangram function is
 $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$
 $F(x, y, z) = f(x, y, z) + \lambda g(x, y, z)$
 $F(x, y, z) = (x - 1)^{2} + (y - 2) + (z + 1)^{2} + \lambda(x + y^{2} + z^{2} - 24)$
 $\sum_{x = 1}^{F} = 2(x - 1) + 2\lambda x$
 $\sum_{y = 2}^{F} = 0$
 $y(y - 2) + y^{2} y = 0$
 $y(y - 2) + y^{2} y = 0$
 $y(y - 2) + y^{2} y = 0$
 $(1 + \lambda)x = 1 = 0$
 $(1 + \lambda)y - 2 = 0$
 $(1 + \lambda)y - 2 = 0$
 $(1 + \lambda)z = 1 = 0$
 $(1 + \lambda)y = 2$
 $y = \frac{1}{2} + \frac{1}{2}$
 $y = \frac{1}{2} + \frac{1}{2}$

$$from O R(G) \qquad from O R(G) \qquad from O R(G) \qquad from O R(G) \qquad y = -z
I = -z
Content for the formation formation for the formation formation for the formation formati$$

Use Equ 6 th @ (9) =) 2(1+y+3z) = a $2\chi + \chi + 3\chi = \alpha$ $G_{X} = \alpha$ pc= 9/6 6 => [4=a/6] and [z=a/6] .: The stationary points are (9/6, 9/6, 9/6) Hence, minimum value f = x yz3 $= (9/6)^{2} (9/6) (9/6)^{3}$ = (9/6) "

71

Erample-6

Find the maximum volume of the lagrest rectangeder parallelopiped that can be inscribed in an Ellipsoid $\frac{3C^2}{C^2} + \frac{y'}{b^2} + \frac{z'}{C^2} = 1$.

Let volume $f(x, y, z) = 8xyz \longrightarrow 0$

and
$$g(x,y,z) = \frac{x'}{az} + \frac{y'}{b'} + \frac{z'}{c'} = 1 \longrightarrow B$$

 $b_{i} \quad g(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{\mathbf{x}'}{\alpha'} + \frac{\mathbf{y}'}{b'} + \frac{\mathbf{z}'}{c'} - 1 \longrightarrow \mathbf{b}$

$$\int \frac{\partial F}{\partial x} = 0$$

$$\int F(x,y,z) = \int (x,y,z) + \lambda g(x,y,z)$$

$$F(x,y,z) = \int (x,y,z) + \lambda g(x,y,z)$$

$$F(x,y,z) = 8xyz + \lambda \left(\frac{x^{t}}{a^{t}} + \frac{y^{t}}{b^{t}} + \frac{z^{t}}{c^{t}} - 1\right)$$

$$\frac{\partial F}{\partial x} = 8yz + \frac{2x\lambda}{a^{t}}$$

$$\frac{\partial F}{\partial y} = 0$$

$$\Rightarrow 8yz + \frac{2x\lambda}{a^{t}} = 0$$

$$(x) hy x_{2} \Rightarrow \frac{8xyz}{2} + \frac{px^{t}}{2a^{t}}$$

$$\frac{\partial F}{\partial y} = 0$$

$$\Rightarrow 8xyz + \frac{ay\lambda}{a^{t}} = 0$$

$$(x) hy x_{2} \Rightarrow \frac{8xyz}{2} + \frac{px^{t}}{2a^{t}}$$

$$\frac{\partial F}{\partial y} = 0$$

$$\Rightarrow 8xyz + \frac{ay\lambda}{b^{t}} = 0$$

$$(x) hy x_{2} \Rightarrow \frac{8xyz}{2} + \frac{px^{t}}{2a^{t}}$$

$$\frac{\partial F}{\partial y} = 0$$

$$\Rightarrow 8xyz + \frac{ay\lambda}{b^{t}} = 0$$

$$(x) hy x_{2} \Rightarrow \frac{8xyz}{2} + \frac{px^{t}}{2a^{t}}$$

$$\frac{\partial F}{\partial y} = 0$$

$$\Rightarrow 8xyz + \frac{ay\lambda}{b^{t}} = 0$$

$$(x) hy x_{2} \Rightarrow \frac{8xyz}{2} + \frac{px^{t}}{2a^{t}}$$

$$\frac{\partial F}{\partial z} = 0$$

$$\frac{4xyz}{a^{t}} = -\frac{y^{t}}{b^{t}}$$

$$\frac{Axyz}{a^{t}} = -\frac{y^{t}}{a^{t}}$$

$$\frac{\partial F}{b^{t}} = 0$$

$$\frac{Axyz}{b^{t}} = 0$$

$$\frac{\partial F}{\partial z} = 0$$

$$\frac{\partial$$

from i, O, 3 we get $\frac{\partial t}{\partial t} = \frac{y'}{h^2} = \frac{z'}{h^2} \longrightarrow \mathcal{F}$ $\mathcal{E}q_{\mu}(\mathcal{B}) \rightarrow \mathcal{X}' + \frac{y'}{h^2} + \frac{z'}{c^2} =)$ $\frac{\chi'}{\alpha^{2}} + \frac{\chi'}{\alpha^{2}} + \frac{\chi'}{\alpha^{2}} = 1$ $\frac{3x^{2}}{2} = 1$ $x^2 = \frac{a}{2}$ $x = \frac{0}{\sqrt{3}}$, $y = \frac{h}{\sqrt{3}}$, $z = \frac{c}{\sqrt{3}}$. . The Extremum points (9/3, 5/3, 1/3) mascimum volume, V = 8242 = 8 (1/53) (9/53) (9/53) V = 80bc

MA3151-MATRICES AND CALCULUS

<u>UNIT-4</u>

INTEGRAL CALCULUS

Mr.V.PRAKASH,M.Sc;M.Phil;B.Ed; Assistant Professor Department of Mathematics

UNIT- & [INTEGRAL CALCULUS] Definite Integrals:-It it is a function on [a, b], then $\int_{a}^{b} f(x) dx = \lim_{n \to 0} \frac{f(x)}{i=1} f(x) \Delta x, \quad \text{where } \Delta x = \frac{b-q}{h}$ Here E. f(xi) Dx is Called Riemann gam. Example-0 Evaluate the Riemann sum for $f(x) = x^2 - 6x$, taking the sample points to be right and points and a=0; b=3 and n = 6. Solv! Given n=6; a=0; b=3 and $f(x)=x^{2}-6x$ $\Delta x = \frac{b-a}{n} = \frac{3-o}{6} = \frac{3}{6} = \frac{3}{6} = \frac{3}{2} = 0.5$ $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1.0$, $x_3 = 1.5$, $x_4 = 2.0$, $x_5 = 2.5$, 26 = 3.0The Riemann sum is $\mathcal{R}_6 = \underbrace{\overset{\circ}{\underset{t=1}{\overset{\circ}{\underset{t=1}{\overset{\circ}{\atop}}}}}_{f(t)} f(t) \Delta \mathcal{R}$ = $f(x_1) \Delta x_1 + f(x_2) \Delta x_1 + f(x_3) \Delta x_2 + f(x_4) \Delta x_1 + f(x_5) \Delta x_1$ + f(x6) Dx $= \Delta \chi \left[f(0.5) + f(1.0) + f(1.5) + f(2-0) + f(2-5) + f(3.0) \right]$ = 0,5 [-2-875-5-5.625-4+0.625+9] = 0.5[-7.875] $R_{6} = -3.9375$

Example- & Evaluate the Riemann sum for 5" (x-6x) dx. 50 m. Given that a=0; b=3; & $f(x) = x^2 - 6x$ $Dx = \frac{b-a}{n} = \frac{3-o}{n} = \frac{3}{n}$ and $x_i = 3i_n$ $\int (x^2 - 6x) dx = \lim_{n \to \infty} \int f(x_0) dx$ $= \lim_{n \to \infty} \sum_{(2)}^{n} \left[\left(\frac{3i}{n} \right)^{2} - 6 \left(\frac{3i}{n} \right) \right] \frac{3}{n}$ $= \lim_{n \to \infty} \frac{3}{n} \left[\frac{2}{r_{al}} \left(\frac{27}{h^3} - \frac{18}{n} \right) \right]$ - Lim 13 (21 - 13) 545 /n non (n) (21 - 13) 545 /n $= \lim_{n \to \infty} \frac{3}{n} \left[\frac{3}{21} + \frac{27i^3}{n^3} - \frac{3}{(21)} + \frac{18i}{n} \right]$ $= \lim_{n \to \infty} \left\{ \frac{81}{n^{4}} \frac{2}{(2)} \frac{i^{2}}{n^{2}} - \frac{54}{n^{2}} \frac{2}{(2)} \right\}$ $= \lim_{N \to \infty} \left\{ \frac{8!}{n^{H}} \left(\frac{1^{2} + 2^{2} + \dots + n^{2}}{n^{2}} \right) - \frac{54}{n^{2}} \left(\frac{1 + 2 + \dots + n^{2}}{n^{2}} \right) \right\}$ $= \lim_{n \to \infty} \left\{ \frac{81}{n^{*}} \left[\frac{n(n+1)}{2} \right]^{2} - \frac{54}{n^{2}} \left[\frac{n(n+1)}{2} \right]^{2} \right\}$ $= \lim_{N \to \infty} \int \frac{8!}{n^{*}} \frac{n^{2}(n+1)^{2}}{4} - \frac{54}{n^{2}} \frac{n(n)(1+1/n)^{2}}{2}$ $= \lim_{n \to \infty} \left\{ \frac{8!}{n^n} - \frac{n^2(n^2)(1+\frac{1}{n})^2}{4} - \frac{56}{n^2} + \frac{n^2(1+\frac{1}{n})^2}{n^2} \right\}$ $= \lim_{n \to \infty} \left\{ \frac{8!}{n!} \frac{n!}{n!} \frac{(1+1/n)^2}{4} - \frac{37}{5!} \frac{(1+1/n)}{2!} \right\}$

= $\lim_{n \to \infty} \int a(b-a) + (b-a)^2 (1+1/4)^3$ = $a(b-a) + (b-a)^{2}(1+1/20)$ { 1/2 = 03 $a(b-a) + (b-a)^{-}(1)$ $= (b-a) \int a + (b$ (b-a) [2a+b-a] 2 = (b-a)(a+b) = (b-a)(b+a) $R = \frac{b-a}{a}$ Evaluate) Cx = 221.) dx . by using Riemann sam Example - @ by taking right End points as the sample points. Given that J (22-22) dr Here, a=0; b=3, $Dx = \frac{b-a}{A} = \frac{3-a}{h} = \frac{3}{h} d$, $dx' = \frac{3i}{h}$ J³(x²-2x) dx = . Lim ≦ f(ic) ∆x; = $\lim_{n \to \infty} \frac{3^n}{n!} f(3^n) \frac{3^n}{n!}$ $= \lim_{n \to \infty} \frac{1}{(2n)} \left[\left(\frac{3^{\prime}}{n} \right)^2 - 2 \left(\frac{3^{\prime}}{n} \right) \right] \binom{3^{\prime}}{n}$ $= \lim_{n \to \infty} \lim_{i \to 1} \left[\frac{q}{n} \left(0^2 - \frac{G}{n} \right) \frac{7}{3} \left(\frac{3}{n} \right) \right]$ $= \lim_{n \to \infty} (3/n) \stackrel{s}{=} \left[\frac{9}{n!} i^{*} - \frac{6}{n!} \right]$

5 = Lim (3/1) \$ = 9/10 - = 6/10] = Lim (3/4) f g/n = 2 i - 6/n = i } $= \lim_{n \to \infty} (3_n) \int g_{n^2} [i + 2^i + - - + n^i] - 6_n [i + 2 + - + n^i]^2$ $= \lim_{n \to \infty} (3/n) \int 9/n^2 \frac{n(n+1)(2n+1)}{6} - \frac{6/n}{2} \frac{n(n+1)}{2} \frac{2}{3}$ $= \lim_{n \to \infty} \int \frac{27}{n^3} \frac{n \cdot n(1+1/n)n(2+1/n)}{6} - \frac{18/n^2}{2} \frac{n \cdot n(1+1/n)}{2}$ $= \frac{\lambda m}{n - 900} \left\{ \frac{27}{\mu^{3}} + \frac{m^{3}(1 + \frac{1}{h})(2 + \frac{1}{h})}{6} - \frac{18}{\mu^{2}} + \frac{m^{2}(1 + \frac{1}{h})}{2} \right\}$ $= \lim_{n \to \infty} \left\{ \frac{27}{4} \left(\frac{1+1}{n} \right) \left(\frac{27}{4} \frac{1}{n} \right) - \frac{18}{2} \left(\frac{1+1}{n} \right) \frac{2}{3} \right\}$ $= \frac{27}{6} \lim_{n \to \infty} (1+\frac{1}{n})(2+\frac{1}{n}) - 9 \lim_{n \to \infty} (1+\frac{1}{n})$ $= \frac{27}{27} (1+\frac{1}{100}) (2+\frac{1}{100}) - 9 (1+\frac{1}{100}).$ $= \frac{27}{6}(1)(2) - 9(1)$ Pla - ---- $= \frac{27}{3} - 9$ 9-9 AR728-8 7 19 R = 0//

(i)
Example (3) Find the Riemann sum for for since
$$0 \le x \le 39$$
,
with six terms, laloing the semple pools to right and points.
Solve that $f(x) = 51/\pi x$, $0 \le x \le 30/2$
Here, $\alpha = 0$, $b = 30/2$, $k = \Delta x = \frac{b-q}{n} = \frac{97/2}{6} = \frac{21}{12}$
 $n=6$
 $a_{12} = 50/n$
 $a_{$

Chapter-4-1

The Fundamental theorem of calculus - part -1 If f is continuous on [a, b] then the functions g' is defined by g(n) = j fterat, a = x = b, is continuing on [a, b] and differentrable on (a, b) and g'or) = f(x). The Fundamental theorem of calculus - part-2 If f is continuous on [a, b] then J for dx = F(b)-F(c) where F is any anti-derivative of f. ie a function set F=f. Example - \bigcirc Find the derivative of the function $g(e) = \int \sqrt{1+t^2} dt$. Solui Sime f(t)= JI+t as continuous. Given that goil = Jr Titte dt WIG T fundamental theorem of Calculus part-1 g'(n) = 1/1+x2 Example-2 Evaluate the Integral ferdx. Solur Criver that fierdre = [e]. = e³-e'//

Example-3 Find of [.] " Sect oft] Solw Cushon that d/dx [] sect dt] pere we have to use the chain rule in Conjuctions with fundamental theorem of Calculus. put $u = x^4 \implies du = 4x^3$ then $d \int \int \operatorname{sect} dt = d \int \operatorname{sect} dt$ = d [] Seet db] dy = Sec U. du = Sec U. Ar = See (24) 4223 = 4x³ sec (x²) // Escample - (2) Evaluate J⁶ Keda soln! Criver that J'si dix = [long x] = log 6 - log 3 = lug (6/3) = lug (2)

Example to Find the area under the Parabola
$$y = x^{2}$$

from $0 = 1$.
Bolow Griven that $f(x) = y = x^{2}$, $0 \in x \in 1$
is $\int_{0}^{1} x^{2} dx = \left[\frac{x^{2}}{3}\right]_{0}^{1} = \left[\frac{1}{3} - \frac{9}{3}\right]$
 $= \frac{1}{3} - \frac{9}{3} = \frac{1}{3}$.
Example (a) what is wrong with the following calculation
 $\int_{-1}^{3} (\frac{1}{3}x) dx = \left[\frac{1}{3}\right]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{1}{3}$.
Solow: The calculation is wrong because the answer
is negative but $f(x) = \frac{1}{3}x = 20$, and it gays that
 $\int_{0}^{1} f(x) dx = 0$, when $f(x) \ge 0$.
The fundamental theorem of calculus applies only
to continuous functions. Here we cannot apply because
 $f(x) = \frac{1}{3}x$ is not continuous on $(-1, 3]$.
Here for her an infinite discontinuity as $x = 0$.
 $\int_{-1}^{3} (\frac{1}{3}x) dx$ does not sout.

Example (9) what is wrong with the Equation

$$\int_{2}^{1} ge^{A} dx = \left[\frac{x^{3}}{-3}\right]_{2}^{2} = -\frac{3}{8}.$$
solve:
The Calculation is not current, became the
answer is negative but $f(0) = \frac{1}{2^{H}} \ge 0$ and by the
Property of integraly $\int_{2}^{10} f(0) dx \ge 0$, when $f(0) \ge 0$.
The fundamental theorem of calculus
applies to continuous function. It cannot be applied
here because $f(0) = \frac{1}{2^{H}}$ is not continuous on $(-2, 1)$
 $\cdot f(0)$ has an infinite discontinuity at $x=0$.
So. $\int_{2}^{1} \frac{1}{2^{H}} \cdot (01) \int_{2}^{1} \frac{1}{2^{H}} does not consist$
 $\frac{1}{2^{2}} \int_{2}^{10} \frac{1}{2^{2}} \int_{2}^{10} \frac{1}{2$

INDEFINITE INTEGRALS !-Escample -0 Evaluate 5 (10x4 - 2 seet 2) dre <u>soln</u> Gron J (10x4-25ee x) dx = 10 Joch dx - 2 See ordx = 10 (25) - 2 tomar + C 2x5-2tanx+c/ Example-@ Evaluate J Coso do Criven of Case do $=\int \frac{6030}{5in0} d\theta = \int \frac{6030}{5in0} \cdot \frac{1}{3in0} d\theta$ = [Cet 0 Cesee 0 do = I lose a lato do = - lose a tep Example-3 Evaluate j (corec't - 2et) dt Some Criben J (Cesee²t - 2e^t) dt = [Coser tot= 2] et dt

12

 $= -\cot t - 2e^{t} + c \parallel$

Example (1) Evaluate
$$\int \sec t (\sec t + \tan t) dt$$

Solut
Griven $\int \sec t (\sec t + \tan t) dt$
 $= \int (\sec^{2} t + 9 \sec t \tan t) dt$
 $= \int \sec^{2} t dt + 9 \sec t \tan t dt$
 $= \tan t + 9 \sec t + C_{0}$
Example (5) Evaluate $\int \frac{95m 2x}{5mx} dx$
 $= \int \frac{25mx}{5mx} dx$
 $= \int \frac{25mx}{5mx} dx$
 $= \int 2 \frac{25mx}{5mx} dx$
 $= \int 2 \frac{25mx}{5mx} dx$
 $= 2 \int 2 \frac{5mx}{5mx} dx$
 $= 2 \int \frac{25mx}{5mx} dx$
 $= 3 \int \frac{25mx}{5mx} dx$
 $= 3 \int \frac{25mx}{5mx} dx$
 $= 3 \int \frac{25mx}{5mx} dx$

Evaluate J (V23 + 3/22) da Example-O Solur Cirven J (Vx3 + 3/x2) dx $= \int \left[(x^{3})^{n_{2}} + (x^{2})^{n_{3}} \right] dx$ $= \int (5c^{3/2} + 3c^{3/3}) dx$ $= \left[\frac{2^{3/2+1}}{3/2+1} + \frac{2^{1/2}}{3/2+1} \right] d d d$ ろり = = ~~ $= \left[\frac{2^{5/2}}{5/2} + \frac{2^{5/3}}{5/3} \right]$ = 2/5 x 5/2 + 3/5 x 5/3 Escample - 3 Evaluate] (1+tan 20) do Crover J (1+ tan 20) do $=\int (5ee^2 o) do$ $= \tan \alpha + c_{\parallel}$ Evaluate f (Sin 2e + Sim ha) dx Escample-9 golm Croven J (Shire + Shi ha) dx = - Cusse + Cusha + Cp

Exemple-(i) Firehuste
$$\int \frac{1}{5h^{2}\pi \cos^{2}x} dx$$
.
Solar:
Given $\int \frac{1}{5h^{2}\pi \cos^{2}x} dx$
 $= \int \frac{b^{2}\pi + 5h^{2}\pi \cos^{2}x}{5h^{2}\pi \cos^{2}x} dx = \int (\frac{b^{2}\pi + x}{5h^{2}\pi \cos^{2}x}) dx$
 $= \int (\frac{1}{5h^{2}\pi + \frac{1}{\cos^{2}\pi}}) dx$
 $= \int (\frac{1}{5h^{2}\pi + \frac{1}{\cos^{2}\pi}}) dx$
 $= \int (\frac{1}{5h^{2}\pi + \frac{1}{\cos^{2}\pi}}) dx$
 $= \tan \pi - \cosh \pi + C dx$
Exemple-D) $E \text{ valuate } \int \frac{1}{1+5h\pi x} dx$
 $\int \frac{1}{1+5h\pi x} \frac{1-5h\pi x}{1-5h\pi x} dx$
 $= \int \frac{1}{(1+5h\pi x)} \frac{1-5h\pi x}{1-5h\pi x} dx$
 $= \int \frac{1-5h\pi x}{(1-5h\pi x)} dx = \int \frac{1-5h\pi x}{1-5h^{2}\pi} dx$
 $= \int \frac{1-5h\pi x}{\cos^{2}\pi - 6\pi x} dx = \int \frac{1-5h\pi x}{(-5h^{2}\pi - 6\pi x)} dx$
 $= \int \frac{(5e^{2}\pi - \frac{5h\pi x}{\cos^{2}\pi} - \frac{5h\pi x}{\cos^{2}\pi}) dx$
 $= \int (\frac{5e^{2}\pi - \frac{5h\pi x}{\cos^{2}\pi} - \frac{5h\pi x}{\cos^{2}\pi}) dx$
 $= \int (\frac{5e^{2}\pi - \frac{5h\pi x}{\cos^{2}\pi} - \frac{5h\pi x}{\cos^{2}\pi}) dx$
 $= \int (\frac{5e^{2}\pi - \frac{5h\pi x}{\cos^{2}\pi} - \frac{5h\pi x}{\cos^{2}\pi}) dx$
 $= \int (\frac{5e^{2}\pi - \frac{5h\pi x}{\cos^{2}\pi} - \frac{5h\pi x}{\cos^{2}\pi}) dx$
 $= \int (\frac{5e^{2}\pi - \frac{5h\pi x}{\cos^{2}\pi} - \frac{5h\pi x}{\cos^{2}\pi}) dx$

$$\frac{P}{\partial p} \frac{1}{\partial p} \frac{1}{\partial x} \frac{1}{\partial x} = -\int_{a}^{a} \frac{1}{\partial p} \frac{1}{\partial x} dx$$

$$\Rightarrow \int_{a}^{b} C f(0) dx = C \int_{a}^{b} \frac{1}{\partial p} \frac{1}{\partial x} dx$$

$$\Rightarrow \int_{a}^{c} f(0) dx = \int_{a}^{b} \frac{1}{\partial p} \frac{1}{\partial x} dx + \int_{b}^{c} \frac{1}{\partial p} \frac{1}{\partial p} \frac{1}{\partial p} dx$$

$$\Rightarrow \int_{a}^{b} [f(0) \pm g(0)] dx = \int_{a}^{b} \frac{1}{\partial p} \frac{$$

(h)

METHODS OF INTEGRATION O Substitution Rule @ Integrations by Parts 3 Integrations by method of partial fractions successive Reduction method. Ð I - Substitution method Example-O Evaluate J 22 dx Soln' Given that J 22 dx : Put $u = 2e^4 \implies du = 42e^3 dx | 2e^4 = u$ $\frac{du}{dt} = 2e^3 dx | 2e^8 = (u)^2$ $\implies \int \frac{2c^2 dx}{\sqrt{1-x^2}} = \int \frac{i}{\sqrt{1-u^2}} \frac{du}{4} = \frac{i}{4} \int \frac{dy}{\sqrt{1-u^2}}$ $= \frac{1}{4} Sim^{-1}(u) + C$ $T = \frac{1}{4} Sim^{-1}(sc^{h}) + C$ $\begin{cases}
W-k-T \\
\int \frac{d^{2}}{\sqrt{a+x^{2}}} = Gin^{-}(3y_{a})
\end{cases}$ Evaluate j Gris'x dx Example-2 Curven that J Sin 1/2 dr Solur $p_{ut} \quad g_{dm}^{-1} > c = t$ $\frac{1}{\sqrt{1-x^2}} dx = dt$

Ø

$$\Rightarrow \int \frac{51n^{-1}x}{11x^{2}} dx = \int t dt$$

$$= t^{2}_{X} + c$$

$$T = \frac{5n^{-1}x}{2} + c / l$$
Example $= 0$ Evaluate $\int \frac{600}{5n^{2}\sigma} d\theta$. by mashed of substitution.
91 Mi Cuber that $\int \frac{600}{5n^{2}\sigma} d\theta$
 $put, t = 5in \theta \Rightarrow dt = 600 d\theta$
 $\Rightarrow \int \frac{6000 d\theta}{5n^{2}\sigma} = \int \frac{dt}{t^{3}} = \int t^{-3} dt = \int \frac{t^{-3+1}}{t^{-3+1}} \int \frac{1}{t^{-2}} = \frac{-1}{2t^{2}}$

$$= -\frac{1}{2t^{2}} = -\frac{1}{2t^{2}}$$

$$I = -\frac{1}{2} \int \frac{1}{25m^{2}\sigma} dx = \int x^{3} \cos(x^{4}+z) dx$$

$$\int \frac{1}{x^{2}} dx = \int x^{3} dx (x^{4}+z) dx$$

$$\int \frac{1}{x^{2}} dx = \int x^{3} dx = \int \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

$$\int \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx = \frac{1}{x^{2}} dx$$

Example 0 Evaluate
$$\int \frac{x}{\sqrt{1-Ax^{2}}} dx$$

give:
 $Given + Ant \int \frac{x}{\sqrt{1-Ax^{2}}} dx$
 $fat. I - 4x^{2} = u \Rightarrow -9x dx = du$
 $x dx = \frac{du}{-8}$
 $\Rightarrow \int \frac{x}{\sqrt{1-Ax^{2}}} = \int \frac{(d^{14}/3)}{\sqrt{1-Ax^{2}}} = -\frac{1}{8} \int \frac{d^{14}}{\sqrt{x}}$
 $= -\frac{1}{8} \int \frac{d^{14}}{(u)^{14}} = -\frac{1}{8} \int \frac{u^{16}}{\sqrt{x}} du$
 $= -\frac{1}{8} \int \frac{u^{16}}{(u)^{14}} = -\frac{1}{8} \int \frac{u^{16}}{\sqrt{x}} du$
 $= -\frac{1}{8} \int \frac{u^{16}}{(u)^{14}} = -\frac{1}{8} \int \frac{u^{16}}{\sqrt{x}} du$
 $= -\frac{1}{8} \int \frac{u^{16}}{(u)^{14}} = -\frac{1}{8} \int \frac{u^{16}}{\sqrt{x}} du$
 $I = -\frac{1}{8} \sqrt{1-Ax^{2}} + C \sqrt{14}$
Example 0 E value to $\int \frac{1}{1+x^{2}} - x^{5} dx$
 $fut. 1+3x^{2} = u \Rightarrow 2x dx = du$
 $x dx = \frac{1}{3} \sqrt{14} \int \frac{1}{2} \sqrt{14} x^{2} - \frac{1}{3} \sqrt{14}$
 $\Rightarrow \int \frac{1}{1+x^{2}} x^{5} dx = \int \sqrt{1+x^{2}} \cdot x^{4} \cdot x dx$
 $= \int \sqrt{14} \sqrt{1-4x^{2}} - \frac{1}{2} \sqrt{14} \sqrt{14}$
 $= \sqrt{14} \int \frac{u^{16}}{u^{16}} (1+u^{2}-2u)^{16} du$
 $= \sqrt{14} \int \frac{u^{16}}{u^{16}} - \frac{1}{2} u^{16} du$
 $= \sqrt{14} \int (u^{16} + u^{76} - 2u^{16}) du$

= $\frac{1}{2} \left(u^{1/2} + u^{5/2} - 2 u^{3/2} \right) du$ $= \frac{1}{2} \left[\frac{u}{\frac{1}{2}+1} + \frac{u}{\frac{1}{2}+1} - \frac{2u}{\frac{3}{2}+1} \right]$ $= \frac{1}{2} \int \frac{u^{3/2}}{3/2} + \frac{u^{3/2}}{7/2} - 2 \frac{u^{3/2}}{7/2} \int \frac{1}{7/2} \frac{1}{2} \frac{1}{2$ $= \frac{1}{2} \left[\frac{2}{2} u^{3/2} + \frac{2}{3} u^{7/2} - \frac{4}{3} u^{5/2} \right]$ = 1/2 ut + 1/2 ut - 2/5 ut $I = \frac{1}{3} (1+x^2)^{\frac{3}{2}} + \frac{1}{7} (1+x^2)^{\frac{1}{2}} - \frac{2}{5} (1+x^2)^{\frac{5}{2}}$ Example-D Evaluate (J2x+1 da Solur Giber that [Tex+1 doc Put 1= 2x+1 => du = 2dx dy = dr =) $\int 2x_{+1} dx = \int \sqrt{u} \cdot \frac{1}{2} du = \int (\frac{u^{1/2}}{2}) \frac{1}{2} du$ $= \frac{1}{2} \int \frac{u^{1/2}}{u^{1/2}} du = \frac{1}{2} \int \frac{u^{1/2}}{u^{1/2}} \int \frac{u^{1/2}}{u^{1/2}} \int \frac{u^{1/2}}{u^{1/2}} du$ $= \frac{1}{2} \left[\frac{\alpha^{3/2}}{3/2} \right] = \frac{1}{2} \left[\frac{2}{3} \alpha^{3/2} \right]$ = 1/3 W + C I = 1/3 (2x+1) 3/2 + C/1

(20)

Evaluate § (26+1) dr Example-9 Solni Croven J (x +1) dx W-IC-J $2\int fund x = 2\int fund x$ $= 2 \int^2 (x^6 + 1) dx$ $= 2 \left[\frac{2^7}{7} + x \right]_{0}^{2}$ $= 2\left[\frac{(2)^{7}}{7}+2\right] - [0]$ $= 2\left[\frac{128}{7} + 2\right] = 2\left[\frac{128 + 14}{7}\right] = 2\left[\frac{142}{7}\right]$ $I = \frac{2.84}{7} / 1$ [X+x-] x - [- - 2] x + X[==] · X[X] 5 = × 1/1

Example (2) Find
$$\int t^2 e^t dt$$
 by along integration by parts.
Solut Crives shot $\int t^2 e^t dt$.
How, $u = t^2$ $dv = e^t dt$.
 $du = 0 t dt$ $v = e^t$
 $W \cdot K \cdot T$ $\int u \, dv = uv \cdot \int V \, du$
 $\int t^2 e^t \, dt = t^2 (e^t) - \int e^t 2t \, dt$
 $= e^t t^2 - 2 \int t \cdot e^t \, dt \longrightarrow 0$
Asgain apply integration by parts on second them of R. H.S.S
Now Consider, $\int e^t e^t \, dt$
 $du = ot = 1$ $v = e^t$
 $W \cdot K \cdot T \int u \, dv = uv \cdot \int V \, du$
 $\int t e^t \, dt = t = t^2 (e^t) - \int e^t \, dt$
 $du = ot = 1$ $v = e^t$
 $W \cdot K \cdot T \int u \, dv = uv \cdot \int V \, du$
 $\int t e^t \, dt = t (e^t) - \int e^t \, dt$
 $= t e^t - e^t \cdot c \longrightarrow 0$
 $CHR @ A = 0$
 $\int t^2 e^t \, dt = e^t t^2 - 2 [t e^t - e^t] + c$
 $= t^2 e^t - 2t e^t + 2e^t + c_H$

$$Example = 0 = Evaluate $\int e^{x} g_{jmx} dx$. by assing integration by Parts.

$$gold = Coven that $\int e^{x} g_{jmx} dx$

$$here, \quad u = e^{x} \qquad | \quad dv = g_{jmx} dx$$

$$here, \quad u = e^{x} \qquad | \quad dv = g_{jmx} dx$$

$$\int u dv = uv - \int v du$$

$$\int e^{x} g_{jmx} dx = e^{x} (-Coyx) - \int (-Coyx) e^{x} dx$$

$$= -e^{x} Coyx + \int e^{x} Coyx dz$$

Again apply integration by parts on second torm of R.H.S

$$hore \quad u = e^{x} \qquad | \quad dv = -Coyx dx$$

$$du = e^{x} u | \quad dv = -Coyx dx$$

$$du = e^{x} | \quad dv = -Coyx dx$$

$$du = e^{x} | \quad dv = -Coyx dx$$

$$du = e^{x} | \quad dv = -Coyx dx$$

$$du = e^{x} | \quad dv = -Coyx dx$$

$$du = e^{x} | \quad dv = -Coyx dx$$

$$du = e^{x} | \quad dv = -Coyx dx$$

$$du = e^{x} dx = -e^{x} Coyx + e^{x} g_{jmx} - \int g_{jmx} e^{x} dx$$

$$= -e^{x} Coyx + e^{x} g_{jmx} - \int e^{x} g_{jmx} dx$$

$$\int e^{x} g_{jmx} dx = -e^{x} Coyx + e^{x} g_{jmx} - \int e^{x} g_{jmx} dx + \int e^{x} g_{jmx} dx$$

$$\int e^{x} g_{jmx} dx = e^{x} g_{jmx} dx = -e^{x} Coyx + e^{x} g_{jmx} - \int e^{x} g_{jmx} dx + \int e^{x} g_{jmx} dx$$

$$\int e^{x} g_{jmx} dx = e^{x} g_{jmx} - e^{x} Coyx$$

$$\int e^{x} g_{jmx} dx = e^{x} g_{jmx} - e^{x} Coyx$$

$$\int e^{x} g_{jmx} dx = y_{a} [e^{x} g_{jmx} - e^{x} Coyx]$$

$$= e^{x} [g_{jmx} - Coyx] = e^{x} [$$$$$$

26 Example-69 Evaluate J (2) dx by using Integralion by parts. Solur let geven that $\int \left(\frac{\log x}{2L}\right)^2 dx$ $= \int \frac{(l_{wgx})^2}{dx} dx$ { /2= >c2 Hore $u = (hgx)^2$ $dv = -\frac{1}{2}e^2 dx$ $\int x^2 dx$ $= \frac{x^{2+1}}{-1+1} = \frac{x^{2}}{-1}$ $= \frac{1}{\sqrt{2}}$ $du = 2 \log du = -\frac{1}{2}$ Judv = uv-Jvdu $\int \frac{(dw_{3}x)^{2}}{x^{2}} dx = (\log x)^{2} (-\frac{1}{x}) - \int (-\frac{1}{x}) (\frac{2}{x} \log x) dx$ $= - \left(\log_{3} x \right)^{2} + \int_{3}^{2} \frac{2 \log x}{x^{2}} dx$ $= -\left(\log x\right)^{2} + 2\int \frac{\log x}{x^{2}} dx$ Again using Integration by parts Her, $u = \log x$ | $dv = \frac{1}{2} dx$ $du = \frac{1}{2} dx$ | $v = -\frac{1}{2} dx$] $u dv = \frac{1}{2} v du$ $= -\frac{(\log n)^{2}}{2(1+2)^{2}} + 2\int dv_{3}x(-1/n) - \int (-1/n) \frac{1}{2(1+2)^{2}} dx$ $= - (\log x)^2 + 2 \left\{ -\frac{1}{2} \log x + \frac{1}{2} \right\} / x^2 dx^2$ $= -\frac{(lugn)^{2}}{2l} + 2 \frac{1}{2} - \frac{lugn}{2l} - \frac{1}{2} \frac{1}{2} + 2 \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{$ (dug X)2 $= - \frac{(\log x)^2}{2L} - 2 \frac{\log x}{2L} - \frac{2}{2L} + \frac{2}{2$

Frendb-C Evaluate
$$\int e^{ax} cubx dx dy cusing integration in parts.$$

Solution:
 $M = \int e^{ax} cush x dx \longrightarrow 0$.
 $M = a d h are constant and $a + 0$ and $h \neq 0$.
 $M = a d h are constant and $a + 0$ and $h \neq 0$.
 $M = a e^{ax}$ $dv = cus hx dx$
 $du = a e^{ax}$ $dv = cus hx dx$
 $du = a e^{ax}$ $dv = cus hx dx$
 $du = a e^{ax}$ $dv = cus hx dx$
 $T = e^{ax} \frac{sinhx}{h} - \int \frac{sinhx}{h} a e^{ax} dx$
 $M = a e^{ax} \int \frac{sinhx}{h} - \int \frac{sinhx}{h} a e^{ax} dx$
 $M = a e^{ax} \int \frac{sinhx}{v} - ay_{h} \int e^{ax} sinhx dx$
 $M = a e^{ax} \int \frac{av}{v} = sinhax$
 $M = a e^{ax} \int \frac{av}{v} = \frac{sinhax}{h} - \int \frac{-cushx}{h} a e^{ax} dx$
 $M = a e^{ax} dx = \frac{av}{v} \int e^{ax} cushx$
 $I = V_{h} e^{ax} sinhx - a_{h} \int e^{ax} (cushx) - \int \frac{-cushx}{h} a e^{ax} dx$
 $I = V_{h} e^{ax} sinhx + \frac{a}{h^{2}} e^{ax} cushx - \frac{a^{2}}{h} \int e^{ax} cushx dx$
 $I = V_{h} e^{ax} sinhx + \frac{a}{h^{2}} e^{ax} cushx - \frac{a^{2}}{h} \int e^{ax} cushx dx$
 $I = V_{h} e^{ax} sinhx + \frac{a}{h^{2}} e^{ax} cushx - \frac{a^{2}}{h} \int e^{ax} cushx dx$
 $I = V_{h} e^{ax} sinhx + \frac{a}{h^{2}} e^{ax} cushx - \frac{a^{2}}{h} \int e^{ax} cushx dx$
 $I = (\frac{h}{h^{2}}) = \frac{e^{ax}}{h^{2}} [sinhx + a_{h} e^{an} cushx$
 $I = (\frac{h}{h^{2}}) = \frac{e^{ax}}{h^{2}} [sinhx + a_{h} e^{an} cushx$$$

Ø $I\left(\frac{a^{2}+b^{2}}{b^{2}}\right) = \frac{e^{ax}}{b} \left[\frac{a}{b} \cos bx + \sin bx\right]$ $T = \left(\frac{b}{a^{\prime} + b^{\prime}}\right) - \frac{e^{01x}}{b} \left[\frac{a}{b} \cos bx + 5 \sin bx\right]$ $= (\frac{b}{a^{2}+b^{2}}) e^{a} \left[\frac{a}{b} \cos b x + s \sin b x \right]$ $= \frac{e^{\alpha n}}{\alpha^2 + b^2} \left[\frac{\alpha b}{b} \cos b n + b \sin b n \right]$ $T = \frac{e^{qx}}{a^2 + b^2} \left[a \cos bx + b \sin bx \right] /$ Example- () Evaluate S e sin bx, by using Integration by parts. solut: Let $I = \int e^{\alpha x} g in b x d x \longrightarrow 0$ Where a & b are constants and a = 0, b = 0. Here, $U = \overline{e}^{\alpha x}$ $\int dv = Shbx$ $du = -\alpha \overline{e}^{\alpha x} dx$ $V = -\frac{\cos bx}{b}$ W-K-J Udv= uv-Jvdu $I = \overline{e}^{\alpha n} \left(-\frac{\cos bn}{b} \right) - \int \left(-\frac{\cos bn}{b} \right) \left(-\alpha \overline{e}^{\alpha n} \right) dx$ = -1/2 e as br -9/2 e as br dx $= -\frac{1}{b} \overline{e}^{\alpha n} \cos bx - \frac{\alpha}{b} \int \overline{e}^{\alpha n} \cos bx dn.$ $\int \int u dv = \alpha v - \int v du \frac{3}{b}$

Again why Triggation parts.
Have
$$u = \overline{e}^{\alpha x}$$
 $dv = \operatorname{Gubba} dx$
 $du = -\alpha \overline{e}^{\alpha x} v = \operatorname{Gubba} dx$
 $u = -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \alpha/b \int \overline{e}^{\alpha x} \operatorname{Gubba} - \int \operatorname{Gubba} (-\alpha \overline{e}^{\alpha x}) dx$
 $= -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \alpha_b \int \overline{e}^{\alpha x} \operatorname{Gubba} + \alpha_b \int \overline{e}^{\alpha x} \operatorname{Gubba} dx$
 $I = -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \frac{\alpha}{b^2} \overline{e}^{\alpha x} \operatorname{Gubba} + \alpha_b \int \overline{e}^{\alpha x} \operatorname{Gubba} dx$
 $I = -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \frac{\alpha}{b^2} \overline{e}^{\alpha x} \operatorname{Gubba} - \alpha_b \int \operatorname{Gubba} dx$
 $I = -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \frac{\alpha}{b^2} \overline{e}^{\alpha x} \operatorname{Gubba} - \alpha_b \overline{e}^{\alpha x}$
 $I = -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \frac{\alpha}{b^2} \overline{e}^{\alpha x} \operatorname{Gubba} - \alpha_b \overline{e}^{\alpha x}$
 $I = -\gamma_b \overline{e}^{\alpha x} \operatorname{Gubba} - \alpha_b \overline{e}^{\alpha x} \operatorname{Gubba}$
 $I = \frac{e^{\alpha x}}{b^2} I = -\gamma_b \overline{e}^{\alpha x} (-\operatorname{Gubba} - \alpha_b \overline{e}^{\alpha x} \operatorname{Gubba})$
 $I (1 + \alpha_b^{-1}) = \overline{e}^{\alpha x} (-\operatorname{Gubba} - \alpha_b \overline{b} \operatorname{Gubba})$
 $I (\frac{b^{+} + \alpha^{+}}{b^{-}}) = \overline{e}^{\alpha x} (-\operatorname{Gubba} - \alpha_b \overline{b} \operatorname{Gubba})$
 $I = (\frac{b^{x}}{\alpha^{+} + b^{+}}) \stackrel{\beta}{=} \frac{e^{\alpha x}}{b^{-}} (-b \operatorname{Gubba} - \alpha_b \overline{b} \operatorname{Gubba})$
 $I = (\frac{\overline{e}^{\alpha x}}{\alpha^{+} + b^{+}}) \stackrel{\beta}{=} (-b \operatorname{Gubba} - \alpha_b \overline{b} \operatorname{Gubba})$
 $I = \frac{\overline{e}^{\alpha x}}{\alpha^{+} + b^{+}} (-b \operatorname{Gubba} - \alpha_b \overline{b} \operatorname{Gubba})$
 $I = \frac{\overline{e}^{\alpha x}}{\alpha^{+} + b^{+}} [-b \operatorname{Gubba} - \alpha_b \overline{b} \operatorname{Gubba})$

$$Fxundle @ F Valuat $\int gin^{n}z dx$, by while integration by parts.

$$gin!$$
by us consider $T_{n} = \int gin^{n}x dx \longrightarrow 0$

$$T_{n} = \int gin^{n-1}x \cdot ginz dx$$

$$How, u = gin^{n-1}x$$

$$du = (n-1)gin^{n-1}x doxy | V = -Uux$$

$$How, u = gin^{n-1}x (-Uux) | V = -Uux$$

$$How, u = gin^{n-1}x (-Uux) - \int (-Uux) | U = -Uux$$

$$How, u = gin^{n-1}x (-Uux) - \int (-Uux) | U = -Uux$$

$$T_{n} = gin^{n-1}x (-Uux) - \int (-Uux) | U = -Uux|$$

$$T_{n} = gin^{n-1}x + (n-1) \int gin^{n-2} (-Uux) dx$$

$$= -Uux gin^{n-1}x + (n-1) \int (gin^{n-2}x dx) dx$$

$$= -Uux gin^{n-1}x + (n-1) \int (gin^{n-2}x - gin^{n-2}x) dx$$

$$= -Uux gin^{n-1}x + (n-1) \int (gin^{n-2}x - gin^{n-2}x) dx$$

$$= -Uux gin^{n-1}x + (n-1) \int gin^{n-2}x dx$$

$$= -Uux gin^{n-1}x + (n-1) \int fin^{n-2}x dx$$$$

Framel. (9) Evaluate
$$\int G_{25}^{n} x \, dn$$
, by using subsystems by parts.
Soluri
 $\int dr = \int G_{25}^{n-1} x G_{25} x \, dx$
 $\int dr = G_{25}^{n-1} x$
 $dr = G_{25}^{n-1} x G_{25}^{n-1} x \, dx$
 $dr = G_{25}^{n-1} x G_{25}^{n-1} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x \, (n-1) G_{25}^{n-2} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x + (n-1) \int (G_{25}^{n-2} x) G_{25}^{n-1} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x + (n-1) \int (G_{25}^{n-2} x) G_{25}^{n-1} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x + (n-1) \int G_{25}^{n-2} x \, dx - (n-1) \int G_{25}^{n-2} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x + (n-1) \int G_{25}^{n-2} x \, dx - (n-1) \int G_{25}^{n-2} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x \, G_{25}^{n-2} x \, dx + (n-1) \int G_{25}^{n-2} x \, dx - (n-1) \int G_{25}^{n-2} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x \, G_{25}^{n-2} x \, dx + (n-1) \int G_{25}^{n-2} x \, dx - (n-1) \int G_{25}^{n-2} x \, dx$
 $= G_{25}^{n-1} x G_{25}^{n-1} x \, G_{25}^{n-2} x \, dx + (n-1) \int G_{25}^{n-2} x \, dx - (n-1) \int G_{25}^{n-2} x \, dx$
 $= G_{25}^{n-1} x \, G_{25}^{n-2} x \, G_{25}^{n-2} x \, dx + (n-1) \int G_{25}^{n-2} x \, dx - (n-1) \int G_{25}^{n-2} x \, dx$
 $T_{10} = G_{25}^{n-1} x \, G_{25}^{n-2} x \, G_{25}^{n-2} x \, G_{25}^{n-2} x \, dx + (n-1) \int T_{1-2}^{n-2} x \, G_{25}^{n-2} x \, G_{25}^{n-2$

Example (9) Evaluate
$$\int_{n}^{M_{1}} g_{M}^{n} x dx$$
.
Solur:
Given that $\int_{n}^{M_{1}} g_{M}^{n} x dx$
 $W_{1} k_{1} = \int_{n}^{M_{1}} g_{M}^{n} x dx = -\frac{G_{2} x S_{M}^{n-1} x}{n} + \frac{n-1}{M} \int_{n}^{M_{1}} S_{M}^{n+1} x dx$
 $\therefore \int_{n}^{M_{1}} g_{M}^{n} x dx = \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{n-1}{M} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{n-1}{M} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{n-1}{M} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{n-1}{M} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{n-1}{M} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{n-1}{M} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \left[-\frac{G_{2} x S_{M}^{n-1} x}{n} \int_{n}^{M_{1}} + \frac{G_{2} x}{n} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $f Hela Ma fixet form Namelales for bush copport d lower lower lower S_{M}
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{1}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$
 $= \frac{n-1}{N} \cdot \frac{n-3}{n-2} \int_{n}^{M_{2}} S_{M}^{n-1} x dx$$

$$Tf n is odd, Hen I = \int_{0}^{p_{L}} ginz dx$$

$$= L - Cus X \int_{0}^{p_{L}} = -\left[Cus p_{L} - Cus p_{I}\right]$$

$$= -\left[0 - B\right] = 1 \implies [I = 1]$$

$$\therefore \int_{0}^{p_{L}} gun^{n} x dx = \begin{cases} \frac{m-1}{n} \cdot \frac{n-s}{n-s} \cdot \frac{m-s}{n-s} - \cdots - \frac{y_{L}}{s} \frac{y_{L}}{s}, n ds even$$

$$\left(\frac{n-1}{n} \cdot \frac{n-s}{n-s} \cdot \frac{n-s}{n-s} - \cdots - \frac{y_{L}}{s}, n ds even$$

$$\left(\frac{m-1}{n} \cdot \frac{n-s}{n-s} \cdot \frac{n-s}{n-s} - \cdots - \frac{y_{L}}{s}, n ds even$$

$$\frac{fexample}{m} = 0, \quad Evaluats \int tan^{-1} x dx, \quad Also ford \int_{0}^{1} tan'n dx$$

$$Solver \quad Cusen \quad dat \int tan^{-1} x dx.$$

$$Hole \quad u = tan' x \qquad du = dx$$

$$du = \frac{1}{1+x^{L}} dx \qquad v = x.$$

$$Wk = \int u dv = uv - \int v du$$

$$\int tan' x dx = tan' x (x) - \int x \frac{1}{1+x^{L}} dx$$

$$I = x tan' x - \int \frac{x dx}{1+x^{L}}$$

$$gut \quad t = 1+x^{L}$$

$$dt = 2x dx$$

$$I = x tan' x - \int \frac{dty}{t}$$

$$I = x tan' x - \int \frac{dty}{t}$$

I = retain're - 1/2) alt = retars x - 1/2 lugt $\mathbf{T} = \mathbf{x} \tan^{-1} \mathbf{x} - \frac{1}{2} \log (1+\mathbf{x}^{2})$ Also we find, $\int tan 'x dx = \left[x tan 'x - \frac{1}{2} \ln(1+x^2) \right]_{0}$ = [(1) lans'() - 1/2 log (1+1)] - [0 - 1/2 log (1+0)] = [tans'(1) - 1/2 ho (2)] - [-1/2 ho (1)] = M/4 - 1/2 hy. (2) - (2) = 1/4 - 1/2 lug (2) sto is 1 - it has an -5.0

$$II \quad Thigonometric \quad Integrals$$

$$O \quad Evaluat \quad \int Cu^{3}x dx$$

$$getue$$

$$Cvon that $\int Cu^{3}x dx$

$$ht \quad u = sinxt \Rightarrow du = Cu3x dx$$

$$ht \quad u = sinxt \Rightarrow du = Cu3x dx$$

$$ht \quad u = sinxt \Rightarrow du = Cu3x dx$$

$$\int Cu^{3}x dx = \int Cu^{3}x Cu3x dx$$

$$= \int (1 - u^{1}) du = \int (u - u^{3}) \int tec$$

$$I = -Sinxt - \frac{Sh^{3}x}{3} + c$$

$$I = -Sinxt - \frac{Sh^{3}x}{3} + c$$

$$S = Fvaluat \int Sin^{5}x Cu^{5}x dx$$

$$= (1 - Cu^{3})^{2} Sinx Cu^{5}x$$

$$ht \quad Sin^{5}x Cu^{5}x dx$$

$$= (1 - Cu^{3})^{2} Sinx Cu^{5}x$$

$$ht \quad us \ Converder, \quad u = Cu3x)^{2} Cu3x dx$$

$$\int Sin^{5}x Cu^{5}x dx = \int (1 - cu^{5})^{2} Sinx dx$$

$$\int Sin^{5}x Cu^{5}x dx = \int (1 - cu^{5})^{2} Sinx dx$$

$$\int Sin^{5}x Cu^{5}x dx = \int (1 - cu^{5})^{2} Cu3x dx$$

$$\int Sin^{5}x Cu^{5}x dx = \int (1 - cu^{5})^{2} Cu^{5}x dx$$

$$\int Sin^{5}x Cu^{5}x dx = \int (1 - cu^{5}x)^{2} Cu^{5}x dx$$

$$\int Sin^{5}x Cu^{5}x dx = \int (1 - cu^{5}x)^{2} Cu^{5}x dx$$

$$= \int (1 - u^{5})^{2} Cu^{5}x dx$$

$$= \int (1 + u^{4} - 2u^{5}) U^{5} du$$

$$= -\int (1 + u^{4} - 2u^{5}) U^{5} du$$$$

36 $= -\int (u^{2} + u^{6} - 2u^{4}) du$ $= -\left[\frac{u^{2}}{3} + \frac{u^{7}}{7} - \frac{2u^{5}}{5}\right] + c$ $= -\frac{u^{2}}{3} - \frac{u^{7}}{7} + \frac{2u^{5}}{5} + c$ $I = -\frac{\cos^{3}x}{3} - \frac{\cos^{7}x}{7} + 2\frac{\cos^{7}x}{5} + C$ 3 Evaluate: Jtan 3 x dx: solw jtanzdx = jtanzoli = $\int (See^{ix} - 1) \tan x dx$. =) (sec x tan x - tan x) dx = J Sec're tann dx - ften x dx linu= tan, =>du= Sechola $= \cdot \int \alpha d\alpha - \int consider$ = 4 - by box + C = tansen - lug Cussi + C at is Cur - "No 1) [- - walter to it is t

Note:

• Sin A Cos B =
$$\frac{1}{2} \left[\text{Sin}(A-B) + \text{Sin}(A+B) \right]$$

• Cos A Cos B = $\frac{1}{2} \left[\text{Cos}(A-B) + \text{Cos}(A+B) \right]$
• Sin A Sin B = $\frac{1}{2} \left[\text{Cos}(A-B) - \text{Cos}(A+B) \right]$
• Evaluate $\int \text{Sin} 4x \text{ Cos} 5x \text{ d}x$
Solut Cos on that $\int \text{Sin} 4x \text{ Cos} 5x \text{ d}x$.
• $\frac{1}{29} \frac{1}{91} \frac{1}{$

37

5 E

Evaluate j^{T/2} Cos⁵ x dx.

Solut:
$$\int_{0}^{\pi/2} \cos^{5} x \, dx = \int_{0}^{\pi/2} \cos^{4} x \, dx \, \cos x \, dx$$
$$= \int_{0}^{\pi/2} \left(\cos^{5} x\right)^{2} \, \cos x \, dx$$
$$= \int_{0}^{\pi/2} \left(1 - \sin^{5} x\right)^{2} \, \cos x \, dx$$

let u = sinne => du = cose dre

when
$$x=0 \implies u=Sh(0) \implies \cdot u=0$$

 $x=n/2 \implies u=Sh(n/2) \implies u=1$

$$\int_{0}^{\frac{1}{2}} \left[1 - 5\lambda^{\frac{1}{2}} x \right]^{2} \cos x \, dx = \int_{0}^{1} \left(1 - u^{2} \right)^{2} \, du$$

$$= \int_{0}^{1} \left(1 + u^{\frac{1}{2}} - 2u^{2} \right)^{2} \, du$$

$$= \left[u + \frac{u^{5}}{5} - \frac{2u^{3}}{3} \right]_{0}^{1}$$

$$= \left[1 + \frac{1}{5} - \frac{2}{3} \right] - \left[0 \right]$$

$$= \left[1 + \frac{1}{5} - \frac{2}{3} \right] = \left[\frac{15 + 3 - 10}{15} \right]$$

$$I = \frac{8}{15}$$

38

(c) Evaluate
$$\int_{0}^{\pi} 3\mu^{2} x dx$$

Solut: Criven that $\int_{0}^{\pi} 5\mu^{2} x dx$
 $= \int_{0}^{\pi} (1 - \frac{\cos 2x}{2}) dx$
 $= \frac{1}{2} \int_{0}^{\pi} (1 - \frac{\sin 2x}{2}) \int_{0}^{\pi} dx$
 $= \frac{1}{2} \int_{0}^{\pi} (1 - \frac{\sin 2x}{2}) \int_{0}^{\pi} dx$
 $= \frac{1}{2} \int_{0}^{\pi} (1 - \frac{\sin 2x}{2}) \int_{0}^{\pi} dx$

(3)
(3) Evaluat
$$\int_{0}^{\pi} \sin^{2}x \ \sin^{2}x \ dx.$$

 $\sin^{2}x \ \sin^{2}x \ \sin^{2}x \ dx^{2}x \ dx.$
 $\sin^{2}x \ \sin^{2}x \ = \frac{1-(2\pi)^{2}x^{2}}{2} \ dx^{2}x^{2} \ dx^{2}x^{2}$
 $\int_{0}^{\pi} \sin^{2}x \ \sin^{2}x \ dx \ = \int_{0}^{\pi} \sin^{2}x \ (\sin^{2}x)^{2} \ dx$
 $= \int_{0}^{\pi} (\frac{1-(2\pi)^{2}x}{2}) (\frac{1+(2\pi)^{2}x}{2})^{2} \ dx$
 $= \frac{1}{8} \int_{0}^{\pi} (1-(2\pi)^{2}x) (1+(2\pi)^{2}x)^{2} \ dx$
 $= \frac{1}{8} \int_{0}^{\pi} (1-(2\pi)^{2}x) (1+(2\pi)^{2}x)^{2} \ dx$
 $= \frac{1}{8} \int_{0}^{\pi} (1-(2\pi)^{2}x) (1+(2\pi)^{2}x)^{2} \ dx$
 $= \frac{1}{8} \int_{0}^{\pi} (1+(2\pi)^{2}x+2(2\pi)^{2}x) \ dx$
 $= \frac{1}{8} \int_{0}^{\pi} [1+(2\pi)^{2}x+2(2\pi)^{2}x-(2\pi)^{2}x^{2}] \ dx$
 $= \frac{1}{8} \int_{0}^{\pi} [1+(2\pi)^{2}x-(2\pi)^{2}x-(2\pi)^{2}x^{2}] \ dx$

$$F_{0}$$

$$= \frac{1}{8} \int_{0}^{\pi} \left[1 + \frac{1}{2} \cos 2x - \frac{1}{2} - \frac{\cos 2x}{2} - \frac{\cos 2x}{2} - \frac{\cos 2x}{2} - \frac{\cos 2x}{2} \right] dx$$

$$\int \frac{1}{2} \cos 2x - \frac{1}{2} - \frac{\cos 2x}{2} - \frac{1}{2} \cos 2x - \frac{\cos 2x}{4} -$$

	(HI)
Tougonometric substitutions	
Expression Substitution	Identity
	$a^2 = 1 - 66^2 a$
$\sqrt{a^2 - x^2} \qquad x = \alpha \sin \theta ; - \pi/2 \le \alpha \le \pi/2$	$\cos^2 \sigma = 1 - \sin^2 \sigma$
$\sqrt{a^2+x^2}$ $x = a \tan \phi; -\pi/2 \le \phi \le \pi/2$	14 ten o = See o
$\sqrt{x^2-a^2}$ $x = \alpha \operatorname{Sec} \Theta$; $0 \leq \omega \leq \pi/2$	Sec. 2 -1 = tanão
O Evaluate J 1 dre	- sharing
Soln'-	
Criven that J dix Vai-xi	
let us consider x = a sino => dx = a cusod	0.
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{a \cos a da}{\sqrt{a^2 - a^2 \sin^2 a}}$	*
$=\int \frac{\alpha \cos \alpha d\alpha}{\sqrt{\alpha^2 (1-\sin^2 \alpha)}} = \int \frac{\alpha \cos \alpha}{\sqrt{\alpha^2 \cos^2 \alpha}}$	20
$=\int \frac{\alpha}{\alpha} \frac{\alpha}{\alpha} \frac{\beta}{\alpha} = \int d\alpha$	
$= \begin{bmatrix} \sigma \end{bmatrix}$ $\Sigma = Sin(2/a)$	$x = \alpha S h \theta$
T = Simi(2/a)	Sind = Na
	c2 = 5, 2m ⁻¹ (2/er)
	•

-

(2) Evaluate:
$$\int \sqrt{a^2 - x^2} dx$$

Solut:
 $dx = a Sh \theta$ $\int a^2 - x^2 dx$
 $dx = a Gh \theta$ $\int a Sh \theta = x$
 $dx = a Gh \theta$ $\int a Sh \theta = x$
 $dx = a Gh \theta$ $\partial \theta$ $\int Sh \theta = x$
 $\theta = Sh^{-1}(\theta)$ $\int G^{-1} - Sh^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$ $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$ $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}(\theta)$
 $G^{-1} - G^{-1}$

$$= \frac{a'_{2}}{2} \left[\frac{5\mu(2k) + (2k)}{2} + \frac{a^{t}}{2} \right]$$

$$T = \frac{a'_{2}}{2} \frac{5\mu(2k) + \frac{a^{t}}{2} \cdot \frac{2}{2} + \frac{a^{t}}{2} - \frac{a^{t}}{2} + \frac{a^{t}}{2} + \frac{a^{t}}{2} + \frac{a^{t}}{2} + \frac{a^{t}}{2} - \frac{a^{t}}{2} + \frac$$

$$\int \frac{x}{\sqrt{3-2x-x^2}} \, dx = \int \frac{\alpha-1}{\sqrt{4-\alpha^2}} \, du = \int \frac{(\alpha-1) \, du}{\sqrt{4-\alpha^2}}$$

Again, we put t = 25 mo dt = 2600 d0 $= \int \frac{(25 \text{ mo} - 1)}{\sqrt{4 - (25 \text{ mo})^2}} = 2600 d0$ $= \int \frac{(25 \text{ mo} - 1)}{\sqrt{4 - (25 \text{ mo})^2}} = \int \frac{(25 \text{ mo} - 1)}{\sqrt{4 (1 - 5 \text{ mo})^2}}$

$$= \int \frac{2}{\sqrt{h}} \frac{dh(2 + 2h(0 - 1))}{\sqrt{h}} d\theta$$

$$= \int \frac{d}{\sqrt{h}} \frac{dh(2 + 2h(0 - 1))}{2(2h(0 - 1))} d\theta = \int \frac{dh(2 + 2h(0 - 1))}{2(2h(0 - 1))} d\theta$$

$$= \int (2 - 5h(0 - 1)) d\theta = \int \frac{d}{d} \frac{dh(2 - 0)}{d} \frac{d\theta}{d} + C$$

$$= -\sqrt{h} - \frac{d}{d} - \frac{d}{d} \frac{dh}{d} + C$$

$$= -\sqrt{h} - \frac{d}{d} - \frac{d}{d} \frac{dh}{d} + C$$

$$= -\sqrt{h} - \frac{d}{d} \frac{d}{d} \frac{d}{d} + \frac{d}{d} \frac{d}{d} + C$$

$$= -\sqrt{h} - \frac{d}{d} \frac{d}{d} \frac{d}{d} \frac{d}{d} + \frac{d}{d} \frac{d}{d$$

Ð

$$(17)$$

$$= \int \frac{2 \operatorname{Sat}^{\circ} \circ \operatorname{AO}}{\operatorname{A \operatorname{fan}^{\circ} \circ} \sqrt{\operatorname{A \operatorname{gat}^{\circ} \circ}}} \qquad \left[\left[\operatorname{Unus} \operatorname{I} \operatorname{I \operatorname{fan}^{\circ} \circ} \operatorname{S \operatorname{sat}^{\circ} \circ \operatorname{AO}} \right] \\= \int \frac{2 \operatorname{Sat}^{\circ} \circ \operatorname{AO}}{\operatorname{A \operatorname{fan}^{\circ} \circ} (2 \operatorname{Sato})} = \int \frac{\operatorname{Sat}^{\circ} \circ \operatorname{AO}}{\operatorname{A \operatorname{fan}^{\circ} \circ} \operatorname{gut} \circ} \\= \left[\frac{2 \operatorname{Sat}^{\circ} \circ \operatorname{AO}}{\operatorname{fan}^{\circ} \circ} \right] \\= \left[\operatorname{Sat}^{\circ} \circ \operatorname{AO} \right] \\= \left[\operatorname{Sat}^{\circ} \circ \operatorname{Sat$$

(i) Evaluate:
$$\int \sqrt{a} - x^{2} dx$$

Solar (when that $\int \sqrt{a} - x^{2} dx$
Let $x = a \cdot s = dx$
 $\int \frac{dx}{\sqrt{a} - x^{2}} = \int \frac{a \cdot (m \cdot a \cdot dx)}{\sqrt{a} - a^{2} \cdot s + a^{2} \cdot s = dx}$
 $= \int \frac{a \cdot (m \cdot a \cdot dx)}{\sqrt{a} - a^{2} \cdot s + a^{2} \cdot s} = \int \frac{a \cdot (m \cdot a \cdot dx)}{\sqrt{a} \cdot (1 - s + a^{2} \cdot s)}$
 $= \int \frac{a \cdot (m \cdot a \cdot dx)}{\sqrt{a} \cdot (s + a^{2} \cdot s)} = \int \frac{a \cdot (m \cdot a \cdot dx)}{a \cdot s + a^{2} \cdot s}$
 $= \int dx = 8 + c$
 $T = 5 + a^{-1} (2/a) + c$
 $\int \frac{a \cdot (m \cdot a \cdot s)}{\sqrt{a} - a^{2} \cdot s + a^{2} \cdot s}$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 $x = -3 + a^{2} \cdot (1 - 3 + a^{2} \cdot s)$
 x

Integrals of the form

$$TYPE^{-1} \int \frac{dx}{\sqrt{2a^{2}+bax+c}}$$

$$O = yealude^{1} \int \frac{dx}{\sqrt{2a-3x+x^{2}}}$$

$$gelve (w ven + let) \int \frac{dx}{\sqrt{2-3x+x^{2}}}$$

$$gelve (w ven + let) \int \frac{dx}{\sqrt{2-3x+x^{2}}} = (x-3k)^{-1}/4$$

$$gelve (w ven + let) \int \frac{dx}{\sqrt{2-3x+x^{2}}}$$

$$gelve (w ven + let) \int \frac{dx}{\sqrt{2-3x+x^{2}}} = (x-3k)^{-1}(x/k) \int \frac{dx}{\sqrt{2-3x+x^{2}}}$$

$$gelve (w ven + let) \int \frac{dx}{\sqrt{2-3x+x^{2}}} = (w sh^{-1}(x/k)) \int \frac{dx}{\sqrt{2x-3}} + c$$

$$gelve (w sh^{-1}(x/k)) \int \frac{dx}{\sqrt{2-3x+x^{2}}} = (w sh^{-1}(x/k)) \int \frac{dx}{\sqrt{2x-3}} + c$$

$$gelve (w sh^{-1}(x/k)) \int \frac{dx}{\sqrt{2x-3}} = (w sh^{-1}(x/k)) \int \frac{dx}{\sqrt{2x-3}} + c$$

$$gelve (w sh^{-1}(x/k)) \int \frac{dx}{\sqrt{2x-3}} + c$$

(2) Evaluat
$$\int \frac{\pi}{\sqrt{x^{2} + x + x}} dx$$

Solution:
Guine that $\int \frac{\pi}{\sqrt{x^{2} + x + x}} dx$
Let us consider $x = A \frac{d}{dx} [x^{2} + x + x] + B$
 $x = A(2x+x) + B$
Equating the Cultification of x' on both scale.
 $1 = 2A \Rightarrow 2A = 1 \Rightarrow \boxed{A = \frac{y_{2}}{2}}$
Equating the constant forms on both scale.
 $a = A + B \Rightarrow B = -A \Rightarrow \boxed{B = -\frac{y_{2}}{2}}$
 $\int \frac{\pi}{\sqrt{x^{2} + x + x}} dx = \int \frac{A(2x+x) + B}{\sqrt{x^{2} + x + x}} dx$
 $= A \int \frac{(2x+x)}{\sqrt{x^{2} + x + x}} dx + B \int \frac{1}{\sqrt{x^{2} + x + x}} dx$
 $= \frac{y_{2}}{2} \int \frac{2}{\sqrt{x^{2} + x + x}} dx - \frac{y_{2}}{2} \int \frac{1}{(x^{2} + x + x)} dx$
 $= \sqrt{x^{2}} \int \frac{1}{\sqrt{x^{2} + x + x}} dx$
 $= \sqrt{x^{2} + x + x} - \frac{y_{2}}{2} \int \frac{1}{(x^{2} + x + x)} dx$
 $= \sqrt{x^{2} + x + x} - \frac{y_{2}}{2} \int \frac{1}{(x^{2} + x + x)} dx$

With
$$\int \int \frac{dx}{(x^{2} + a^{2})} = 5A \cdot h^{-1}(7/a)$$

$$= \sqrt{x^{2} + a^{2}} = 5A \cdot h^{-1}(7/a)$$

$$= \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{(a + i)}{(3)}\right] + C$$

$$T = \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{a + a^{2}}{(3)}\right] + C$$

$$T = \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{a + a^{2}}{(3)}\right] + C$$

$$T = \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{a + a^{2}}{(3)}\right] + C$$

$$T = \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{a + a^{2}}{(3)}\right] + C$$

$$T = \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{a + a^{2}}{(3)}\right] + C$$

$$S = \sqrt{x^{2} + a^{2}} - \frac{1}{2} \cdot 5A \cdot h^{-1}\left[\frac{a + a^{2}}{(3)}\right] + C$$

$$S = \sqrt{x^{2} + a^{2}} - \frac{1}{2} - \frac{1}{2} \cdot 5A \cdot h^{-1} - \frac$$

$$\int \frac{3n-2}{\sqrt{4x^{2}-4x-5}} dx = A \int \frac{d/n(An^{2}-4x-5)}{\sqrt{4x^{2}-4x-5}} dx + B \int \frac{dx}{\sqrt{4x^{2}-4x-5}}$$

$$= \frac{3}{8} \int \frac{d/n(Ax^{2}-4x-5)}{\sqrt{4x^{2}-4x-5}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{4x^{2}-4x-5}}$$

$$= \frac{3}{8} \int \frac{d/n(Ax^{2}-4x-5)}{\sqrt{4x^{2}-4x-5}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{4x^{2}-4x-5}}$$

$$= \frac{3}{4} \sqrt{4x^{2}-4x-5} - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}-x-5/4}}$$

$$= \frac{3}{4} \sqrt{4x^{2}-4x-5} - \frac{1}{4} \int \frac{dx}{\sqrt{(x^{2}-x^{2})^{2}-(\frac{3}{2}x)^{2}}}$$

$$= \frac{3}{4} \sqrt{4x^{2}-4x-5} - \frac{1}{4} \int \frac{dx}{\sqrt{(x^{2}-x^{2})^{2}-(\frac{3}{2}x)^{2}}}$$

$$= \frac{3}{4} \sqrt{4x^{2}-4x-5} - \frac{1}{4} (ash^{-1}(\frac{ax-1}{\sqrt{x})})$$

$$= \frac{3}{4} \sqrt{4x^{2}-4x-5} - \frac{1}{4} (ash^{-1}(\frac{2x-1}{2} \times \frac{a}{\sqrt{x}}))$$

$$TYPE^{2} (1) \int \partial x^{t} + bx + c \quad dx = \int \sqrt{x^{t} + d^{t}} dx \quad out the Integrations
(10) \int (Px+0) \sqrt{xx^{t} + bx + c} dx = A \int \sqrt{x^{t} + bx + c} \cdot d/x (ax^{t} + bx + c) + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c) + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + A (ax^{t} + bx + c)^{3/t} + B \int \sqrt{x^{t} + bx + c} \cdot dx = 2/b A (ax^{t} + bx + c)^{3/t} + A (ax^{t$$

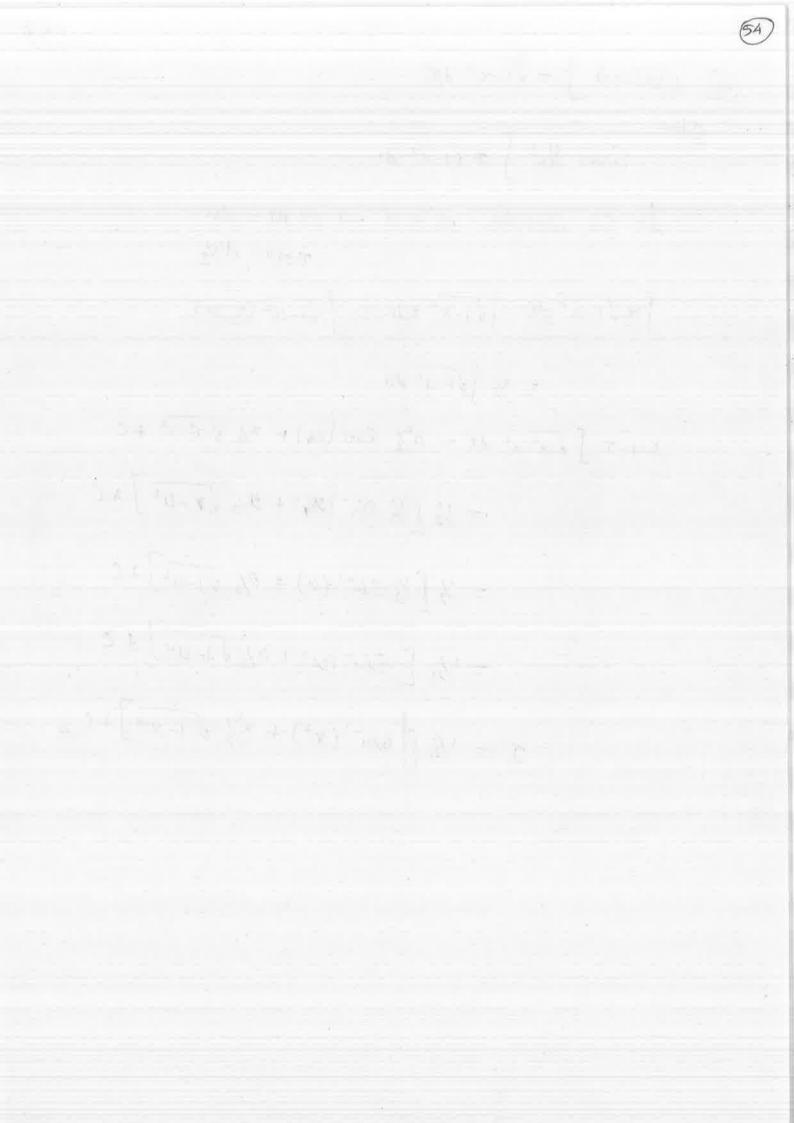
8 (P. 22 + 23 - 24) A

	52
€ Evaluate! (a+1) v x2-2x+2 dx	
50/11/ Crover shot J (21+1) J 72°-276+2 e/21	
let US Consider, set = A d/on (sc-22+2)+B	
x + 1 = A(2x - 2) + B	
Equating the well cart of 'se' on both side,	
$1=2A \implies 2A=1 \implies A=1/2 $	
Equating the constant terms, on book Broks	
1=+2, 2, 2, 3 =) = -2(10)	
$\Rightarrow 1 = -1 + B$ $\Rightarrow 1 + 1 = B \Rightarrow B = 2$	
$\Rightarrow 1+1=B \Rightarrow B=2$	
$I = \frac{2}{3} A \left(\frac{3}{2} - \frac{2}{3} + 2 \right)^{3/2} + B \int \sqrt{3^2 - 23} dx$	
$= \frac{2}{3} \left(\frac{1}{2} \right) \left(\frac{x^2}{2} + 2 \right)^{2/2} + 2 \int \sqrt{\frac{x^2}{2} + 2} dx$	
3/2 1 Ta 1511 dx	
$= \frac{1}{3} \left[x^{2} - 2x + 2 \right]^{3/2} + 2 \int \sqrt{2x - 1}^{2} + 1 dx$	
$W = \frac{1}{2} \int \sqrt{x^2 + a^2} dx = \frac{x}{2} \int \sqrt{a^2 - x^2} + \frac{a}{2} \int \frac{bh}{b} \frac{h^2}{(2y_0)}$	
$= \frac{1}{3} \left(2k^{2} - 22k + 2 \right)^{3/2} + 2 \left[\left(\frac{2}{2} \right) \sqrt{(2k-1)^{2} + 1^{2}} + \frac{1}{2} \frac{2}{3} \sin h^{-1} \left(\frac{2k-1}{2} \right) \right]$	7
= 13	
$= \frac{1}{3} \left(x^{2} - 2x + 2 \right)^{3/2} + 2 \left[\frac{x^{3}}{2} \sqrt{x^{2} - 2x + 2} + \frac{1}{2} \sin h^{-1} (x - 1) \right]$)
$I = \frac{1}{3} \left(x^{2} - 2x + 2 \right)^{3/2} + \left(\frac{x-1}{2} \right) \sqrt{x^{2} - 2x + 2} + 5 \hat{m} \hat{h}^{-1} (x-1) - \frac{1}{2}$	-11

(3) Evaluate
$$\int x \sqrt{1-x^{4}} dx$$

Solut:
(when that $\int x \sqrt{1-x^{4}} dx$
by us controder, $x^{2} = U \Rightarrow 2x dx = du$
 $x dx = dW_{2}$
 $\int x \sqrt{1-x^{4}} dx = \int \sqrt{1-x^{4}} x dx = \int \sqrt{1-u^{4}} (y_{2} du)$
 $= \frac{y_{2}}{\sqrt{1-u^{4}}} du$
 $w_{1}c.T \int \sqrt{u^{4}-x^{4}} dx = \frac{a_{1}}{2} \int \sin^{-1}(a_{1}) + \frac{x}{2} \sqrt{u^{4}-x^{4}} + c$
 $= \frac{y_{2}}{2} \left[\frac{y_{2}}{2} \int \sin^{-1}(a_{1}) + \frac{a_{1}}{2} \sqrt{1-u^{4}} \right] + c$
 $= \frac{y_{2}}{2} \left[\frac{y_{2}}{2} \int \sin^{-1}(a_{1}) + \frac{a_{1}}{2} \sqrt{1-u^{4}} \right] + c$
 $= \frac{y_{4}}{2} \left[\int 2 \int \sin^{-1}(a_{1}) + \frac{a_{1}}{2} \sqrt{1-u^{4}} \right] + c$
 $I = \frac{y_{4}}{2} \left[\int 2 \int \sin^{-1}(x^{4}) + \frac{x}{2} \sqrt{1-x^{4}} \right] + c$

.



TYPE (3)

(1)
$$\int \frac{dx}{(\alpha x^{i} + bx + c)} = \int \frac{dx}{(\alpha^{i} + x^{i})}$$
 and then Integrate.
(1) $\int \frac{dx}{(\alpha x^{i} + bx + c)} = \int \frac{dx}{(\alpha^{i} + x^{i})}$ and $\int \frac{dx}{(\alpha x^{i} + bx + c)} + B \int \frac{dx}{(\alpha x^{i} + bx + c)}$.

65

ť

$$(51) \int \frac{p_{1}}{(a_{2}c^{2}+b_{1}c^{2}+c)} d\beta (= r) dag (c_{1}c_{2}+c_$$

Soluri
Given
$$\int \frac{dx}{(x^2 + 2x + 5)}$$

$$= \int \frac{dx}{[(x+1)^2 + 4]} = \int \frac{dx}{(x+1)^2 + 2^2}$$

 $W \cdot k - T \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}(\frac{x}{a})$

$$= \frac{1}{2} \tan^{-1}\left(\frac{x+1}{2}\right)$$

(3) Evaluate
$$\int \frac{2x+3}{x^{2}+x+1} dx$$
.
Solut: Consider $2x+3 = A d/x (x^{2}+x+1) + B$
 $2x+3 = A(2x+1) + B$
Equality $H_{1} = x(2\pi + 3 - A)/x (x^{2}+x+1) + B$
 $2x+3 = A(2x+1) + B$
Equality $H_{2} = x(2\pi + 3 - A)/x (2\pi + 3 - A)/B$
 $x = A + B$
 $3 = 1 + B \Rightarrow B = 3 - 1 \Rightarrow B = 2$
 $\int U_{1}x_{3} \int \frac{9x+9}{ax^{2}+3x+1} dx = A bg(9x^{2}+3x+2) + 9\int \frac{dx}{ax^{2}+3x+1}$
 $= \log(x^{2}+x+1) + 2\int \frac{dx}{(x+3x)^{2}} + \frac{dx}{(x+3x)^{2}$

I = Integration of Rational Functions By Partial Fractions O Evaluati' an Solul' Criven that I dri ar het as congrder, $\frac{1}{x^2-a^2} = \frac{1}{(x+a)(x-a)} = \frac{A}{x+a} + \frac{B}{x-a}$ = A(X-a) + B(X+a)(x+a) (x-a) Compare Nor on both Broke, 1 = A(x-a) + B(x+a) - = 0put [21=0] In 8900 Put IX = - a In Equ O 1 = A(0) + B(a, +a)1 = B(2a)1 = A(-a-a) + B(0)|=A(-2a)B=1/201 $A = -\frac{1}{2}\alpha$ $\int \frac{dx}{x^2 - a^2} = \int \frac{A}{x + a} dx + \int \frac{B}{(x - a)} dx$ $= \int \frac{-\frac{1}{20}}{\frac{1}{20}} dx + \int \frac{\frac{1}{20}}{x-a} dx = \frac{1}{20} \int \frac{-\frac{1}{20}}{x+a} + \int \frac{\frac{1}{20}}{x-a}$ $= \frac{1}{2a} \left[\frac{dx}{x-a} - \int \frac{dx}{x+a} \right]$ = 1/2a [log (x-0) - log (x+4)] = { 1/2ge = $\frac{1}{2a} \log \left(\frac{\chi - 9}{\chi + a}\right)_{\mu}$

97)

(7) Evaluate:
$$\int \frac{dx}{x^{2} + yxxx^{2}}$$

Solut: (introduction of the form) (x+2)

$$f = \frac{A}{x^{2} + 3xxx^{2}} = \frac{1}{(x+1)(x+2)}$$

$$f = \frac{A}{x+1} + \frac{B}{x+2} = \frac{A(x+2) + B(x+1)}{(x+1)(x+2)}$$

(Compare, Nor on b.s.

$$I = A(x+2) + B(x+1) \longrightarrow 0$$

Not $[x=-1] \quad Ar = 2g_{1}(0)$

$$I = A(-1+2) + B(0)$$

$$I = A(0) + B(-2+1)$$

$$I = B(-2)$$

$$\frac{A(-1+2)}{A=1} = \int \frac{dx}{(x+1)(x+4)}$$

$$f = \int \frac{dx}{x^{2} + 3xx^{2}} = \int \frac{dx}{(x+1)(x+4)}$$

$$f = \int \frac{dx}{x+1} - \int \frac{dy}{x+2}$$

$$= \int u_{3}(x+1) - \int u_{3}(x+2)$$

$$= \int u_{3}\left(\frac{x+1}{x+2}\right)$$

Findback:
$$\int \frac{g_{et} x}{(a_{t} x + 3 b_{t} x + 2)} dx$$

Show that
$$\int \frac{g_{et} x}{(a_{t} x + 3 b_{t} x + 2)} dx$$

Dut $u = b_{t} x = b du = sec^{t} x dx$

$$\int \frac{g_{et} x}{(a_{t} x - 3)} du = sec^{t} x dx$$

$$\int \frac{g_{et} x}{(a_{t} x - 3)} du = sec^{t} x dx$$

$$\int \frac{g_{et} x}{(a_{t} x - 3)} du = sec^{t} x dx$$

$$\int \frac{g_{et} x}{(a_{t} x - 3)} du = sec^{t} x dx$$

$$\int \frac{g_{et} x}{(a_{t} x - 3)} dx = \int \frac{du}{(a_{t}^{t} + 3u + 2)}$$

$$bt us Coulder; \frac{1}{(a_{t}^{t} + 3u + 2)} = \frac{1}{(a_{t}^{t} + 3u + 2)}$$

$$\int \frac{g_{et} x}{(a_{t} + 3u + 2)} dx$$

$$\int \frac{g_{et} x}{(a_{t} + 3u + 2)} dx$$

$$\int \frac{g_{et} x}{(a_{t} + 3u + 2)} dx$$

$$= \int \frac{du}{(a_{t} + 3u + 2)} = \int (\frac{A}{(a_{t} + 1)} + \frac{B}{(a_{t} + 2)}) du$$

$$= \int \frac{1}{(a_{t} + 1)} - \frac{1}{(a_{t} + 2)} du$$

$$= \int \frac{1}{(a_{t} + 1)} - \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 1)} - \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{(a_{t} + 2)} = \frac{1}{(a_{t} + 2)} du$$

$$= \int \log \frac{1}{(a_{t} + 2)} - \log \frac{1}{$$

(5) Evaluate:
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx$$

50/m.

14

4

2

Cuiven that
$$\int \frac{x^{4} - 2x^{2} + 4x + 1}{x^{2} - x^{2} - x + 1} dx$$

$$x + 1$$

$$x^{3} - x^{2} - x + 1$$

$$x + 1$$

$$x + 1$$

$$x^{4} - x^{2} - x^{2} + 2$$

$$x^{4} - x^{2} - x^{2} + 2$$

$$x^{2} - x^{2} + 3x + 1$$

$$x^{2} - x^{4} - x + 1$$

$$\frac{x^{4}-2x^{2}+4x+1}{x^{3}-x^{2}-x+1} = (3(3+1) + \frac{4x}{x^{3}-x^{2}-x+1}$$
$$= (3(3+1) + \frac{4x}{(x-1)^{2}(3(3+1))} \longrightarrow (A)$$

GI

 $\frac{2c^{H}}{2c^{2}} = \chi$ $\frac{2c^{2}}{2c^{2}} = 1$

£

Now Consider,
$$Ax = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{c}{x+1}$$

 $(x+1)^2(x+1) = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{c}{x+1}$
 $= A(x-1)(x+1) + B(x+1) + c(x-1)^2$
 $(x-1)^2(x+1)$

Compare Wr on both side,

$$4x = A(x-1)(x+1) + B(x+1) + C(x-1)^{2} \longrightarrow O$$

$$put \boxed{x=1} = 2B$$

$$40 = 2B$$

$$40 = 2B$$

$$2B = 4$$

$$B = \frac{4}{2}$$

$$\frac{4x}{(x-1)^{2}(x+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^{2}} + \frac{C}{x+1}$$

$$= \frac{1}{x-1} + \frac{2}{(x-1)^{2}} - \frac{1}{x+1}$$

$$\implies \frac{x^{4}-2x^{2}+4x+1}{x^{2}-x^{2}-x+1} = (x+1) + \frac{1}{x-1} + \frac{2}{(x-1)^{2}} - \frac{1}{x+1}$$
Jab, we get

$$\int \frac{2x^{4} - 2x^{2} + 4x + 1}{2x^{3} - 2x^{2} - x + 1} dx = \int (2x + 1) dx + \int \frac{dx}{2x - 1} + 2 \int \frac{dx}{(2x - 1)^{2}} - \int \frac{dx}{2x + 1}$$
$$= \underbrace{(x + 1)^{2}}_{2x}$$

$$= \frac{2}{2} + 2 + \log(2-1) + 2 \frac{(2-1)}{-1} - \log(2(+1))$$
$$= \frac{2}{2} + 2 + \log(2(-1)) - 2(2(-1))^{-1} - \log(2(+1))$$

114

$$I = \frac{2c^{2}}{2} + x + \log(x-1) - \frac{2}{(x-1)} - \log(x+1)$$

The state of the state of the 1.1 Min of Contrate of A 化合物合同合物等等的 stik, stalle Transfil

IMPROPER INTEGRALS $\int_{0}^{\infty} f(p_{1}) dx = \lim_{t \to \infty} \int_{0}^{t} f(p_{1}) dx$ O Evaluate!" S 1/2 dre and determine, a headler the integral is Convergent or divergent. Solut Lot 100 let Jos /2 dot = Lim J dx 1 - 200 J - 20 = $\lim_{E \to \infty} \left[\log_{2} x \right]^{E}$ $= \lim_{t \to \infty} \left[\log t - \log 0 \right]$ $=\lim_{t\to\infty} \left[\log(t) - 0 \right]$ = lim log(E) E-700 os (limit not Escist)

... J'Yscola is drivergent.

@ Evaluate) 1/22 doi and determine Whether the integral is Convergent or divergent. $\frac{50 \ln 2}{2} = \lim_{x \to \infty} \int_{x}^{x} \int_{x}^{y} dx = \lim_{x \to \infty} \int_{x}^{x} \int_{x}^{y} dx$ = Lim [-1/2]2 $= \lim_{t \to \infty} \left(\frac{-1}{t} + \frac{1}{2} \right)$ = -1/0 +1/2 = 0 +1/2 = 1/2 (limit is Enits) . The limit Exists as a finite number and 30 the integral J (1/22) dx is Convergent. 3 For what value of P' is J' dr convergent. are the P-test. Solur $bt \int \frac{1}{x^{p}} dx = \lim_{K \to \infty} \int \frac{1}{x^{p}} dx$ $= \lim_{t \to 0} \left[\frac{2^{p+1}}{-p+1} \right]^{t}$ $= \frac{1}{1-p} \lim_{E \to \infty} \left[\frac{1}{x^{p-1}} \right]^{E}$ $=\frac{1}{1-P}\lim_{k\to\infty}\left[\frac{1}{2}-1\right]$ $\rightarrow \bigcirc$

(3)
(a) (1)
$$x \neq P > 1 \Rightarrow P - 1 > 0$$

Hole, $t \Rightarrow w \Rightarrow t^{P-1} \Rightarrow w$
 $\Rightarrow \frac{1}{t^{P_1}} \Rightarrow 0$
(1) $\Rightarrow \int_{-\infty}^{\infty} dx = \frac{1}{1-P} [0 - 1]$
 $= \frac{1}{1-P} (-1) = \frac{1}{P-1} < \infty$
 $\therefore \int_{-\infty}^{\infty} \frac{1}{x^{P}} dx + y \quad (p + v) + y = 1$.
(a) (2) $x \neq P + 1 \Rightarrow P - 1 < 0 \Rightarrow 1 - P > 0$
Hole, $t \Rightarrow w \Rightarrow t^{P_1} \Rightarrow \infty$
 $\Rightarrow t^{P_1} \Rightarrow 0 \Rightarrow \frac{1}{t^{P_1}} = \infty$
 $\therefore \int_{-\infty}^{\infty} \frac{1}{x^{P_1}} dx + \omega = 0$ (1) $x = y$
 $= w$
 $\therefore \int_{-\infty}^{\infty} \frac{1}{x^{P_1}} dx + \omega = 0$ (1) $x = y$
 $= [twg x]_{0}^{\infty}$
 $= wy(w) - [wy(u)]$
 $= 0^{\infty}$
 $\therefore \int_{-\infty}^{\infty} \frac{1}{x^{P_1}} dx + \omega = 0$ divergend of $P = 1$.

Determine chether each sutegral is convergent and divergent Evaluate those that are convergent. er jerda $\frac{30}{44}\int_{0}^{0}e^{x}dx = \lim_{t \to -\infty}\int_{0}^{\infty}e^{x}dx = \lim_{t \to -\infty}\int_{0}^{\infty}e^{x}dx = \lim_{t \to -\infty}\int_{0}^{\infty}e^{x}dx$ $= \lim_{t \to \infty} (e^{\circ} - e^{t}) = \lim_{t \to \infty} (1 - e^{t})$ = 1-e = 1-0 =1 ... J'et dr is convergent. (b) jerda Solw let $\int e^{x} dx = \lim_{E \to \infty} \int e^{x} dx = \lim_{E \to \infty} \left[e^{x} \right]^{2}$ $= \lim_{t \to 0} \left[e^{t} - e^{0} \right] = \lim_{t \to 0} \left[e^{t} - 1 \right]$ $= e^{0^{\alpha}-1} = \infty$. = Jetax is divergent.

(a) Evaluate:
$$\int_{1}^{1} \frac{dx}{2}$$
.
Solve:
Give first note that the given integral is imployer because
 $b(x) = \frac{1}{2}$ has the vertical asymptote $x=0$, we have
 $\int_{1}^{1} \frac{dx}{2} = \int_{1}^{0} \frac{dx}{2} + \int_{1}^{1} \frac{dx}{2}$
Shea $\int_{0}^{1} \frac{dx}{2} = \lim_{t \to 0^{+}} \int_{t}^{0} \frac{dx}{2} = \lim_{t \to 0^{+}} [\log_{0} x]_{t}^{-1}$
 $= \lim_{t \to 0^{+}} [\log_{0} u) - \log_{t} v] = \lim_{t \to 0^{+}} [u - \log_{0} v]$
 $= \lim_{t \to 0^{+}} \log_{t} t = \infty$
it follows that $\int_{1}^{1} \frac{dx}{2}$ as divergent.
(as Evaluate $\int_{1}^{1} \frac{dx}{1-x}$
we first note that the given integral is improper
laceause $f(x) = \lim_{t \to 0^{+}} \int_{1-x}^{2} \frac{dx}{1-x} = \lim_{t \to 0^{+}} [\log_{1}(x)]_{t}^{-1}$
 $\int_{1}^{2} \frac{dx}{1-x} = \lim_{t \to 0^{+}} \int_{1}^{2} \frac{dx}{1-x} = \lim_{t \to 0^{+}} [\log_{1}(x)]_{t}^{-1}$
 $\int_{1}^{2} \frac{dx}{1-x} = \lim_{t \to 0^{+}} \int_{1}^{2} \frac{dx}{1-x} = \lim_{t \to 0^{+}} [\log_{1}(x)]_{t}^{-1}$
 $= \lim_{t \to 0^{+}} [\log_{1}(x) - \log_{1}(x)]_{t}^{-1}$
 $= \lim_{t \to 0^{+}} [\log_{1}(x) - \log_{1}(x)]_{t}^{-1}$

68) the state in the second s Event of the + East - 1 that - i and togetanthe la the & half models to n in an in

MA3151-MATRICES AND CALCULUS

<u>UNIT-5</u>

MULTIPLE INTEGRALS

Mr.V.PRAKASH,M.Sc;M.Phil;B.Ed; Assistant Professor Department of Mathematics

UNIT-55

MULTIPLE INTEGRALS

Chapter - 5-1 Double Integration in cartesian Co-ordinates] Evaluate $\int \int x(x+y) dy dx$ Escample - 3 Goln: Griben that . JJ 2c (x+y) dy dx $= \int \int (2c^2 + xy) dy dx$ $= \int \left[x^2 y + x y^2 \right]^2 dx$ $= \int \int \left[\chi_{(2)}^{2} + \chi_{(\frac{2}{2})}^{2} \right] - \left[\chi_{(1)}^{2} + \chi_{(\frac{1}{2})}^{2} \right]^{2} d\chi$ $= \int \left[2x^{2} + \frac{4x}{2} - x^{2} + \frac{3}{2} \right] d\lambda$ $= \int \left(x^2 + 3\frac{\pi}{2}\right) dx$ $= \left[\frac{x^2}{3} + \frac{3x^2}{4}\right]$ = [1/3 + 3/4] - [0] 449 $T = \frac{13}{12}$

D

$$\frac{\text{Example}(2)}{\text{Solver}} = \text{Evaluati} \int_{2}^{3} \int_{1}^{2} \frac{1}{xy} dx dy$$

$$\frac{1}{xy} \int_{1}^{2} \int_{-\frac{1}{xy}}^{2} \frac{1}{xy} dx dy = \int_{2}^{3} \int_{2}^{2} \frac{1}{x} \frac{1}{y} dx dy$$

$$= \int_{2}^{3} \frac{1}{y} \left[(\log x) \right]_{1}^{2} dy = \int_{2}^{3} \frac{1}{y} \left[(\log 2) - \log 0 \right] dy$$

$$= \int_{2}^{3} \frac{1}{y} \left[(\log x) \right]_{1}^{2} dy = \int_{2}^{3} \frac{1}{y} \log(2) - \log 0 \right] dy$$

$$= \int_{2}^{3} \frac{1}{y} \left[\log(2) - 0 \right] dy = \int_{2}^{3} \frac{1}{y} \log(2) dy$$

$$= \log(2) \int_{2}^{3} \frac{1}{y} dy = \log(2) \left[\log(2) \right]_{2}^{3}$$

$$= \log(2) \int_{2}^{3} \frac{1}{y} dy dx$$

$$= \int_{2}^{3} \left[\frac{1}{y} \log(2) - \log(2) \right]$$

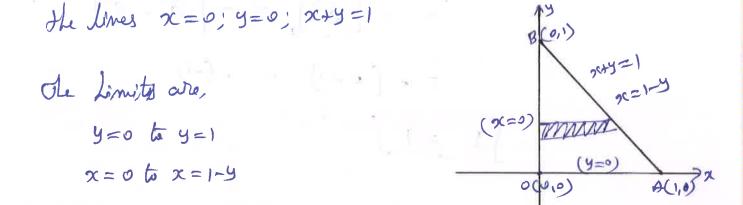
$$I = \log(2) \int_{2}^{3} \frac{1}{y} \frac{1}{y} dy dx$$

$$= \int_{2}^{3} \left[\frac{2^{3}}{y} \frac{1}{y} \frac{1}{y}$$

Evaluate ja jaine y dydre E xample - (5) $\frac{30 \ln y}{2} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{1}}} y \, dy \, dx = \int_{0}^{a} \left[\frac{y}{2} \right]_{0}^{\sqrt{a^{2}-x^{1}}} dx$ $= \int \left(\frac{(a'-x')^2}{2} dx = \int \left(\frac{a'-x'}{2} \right) dx$ $= \frac{1}{2} \int (a^{2} - x^{2}) dx = \frac{1}{2} \left[a^{2} x - \frac{2x^{2}}{3} \right]_{5}^{a}$ $= \frac{1}{2} \left\{ \left[\frac{a^{2}(a) - \frac{a^{2}}{3}}{3} - \frac{1}{3} \right] - \frac{1}{3} \right\}$ $= \frac{1}{2} \left[\frac{a^3 - \frac{a^3}{3}}{3} \right] = \frac{1}{2} \left[\frac{3a^3 - a^3}{3} \right]$ $T = \frac{1}{4} \left[\frac{2a^2}{3} \right] \implies T = \frac{a^3}{3}$ Example - (3) Find the value of JS Ey chay $30 | n!' \int \int \frac{e^{y}}{y} dx dy = \int \frac{e^{y}}{y} [x]^{y} dy = \int \frac{e^{y}}{y} [y]^{y} dy$ $=\int \cdot \hat{e}^{y} dy = \int \underline{e}^{y} \overline{f}_{-1}^{\infty}$ $= -\left[\bar{e}^{y}\right]^{\infty} = -\left[\bar{e}^{\infty} - e^{y}\right]$ $\begin{bmatrix} 0 - \end{bmatrix}$ =1 I

Example () Evaluate
$$\int_{1}^{2} \int_{0}^{x} \frac{1}{x^{2}+y^{2}} dx dy$$

Solve:
 $\int_{1}^{2} \int_{0}^{x} \frac{1}{x^{2}+y^{2}} dx dy$
 $= \int_{1}^{2} \int_{0}^{x} \frac{1}{x^{2}+y^{2}} dy dx$
 $= \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right]_{0}^{x} dx = \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] - \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$
 $= \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right]_{0}^{x} dx = \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) - \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$
 $= \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) - \frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$
 $= \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) - \frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$
 $= \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) - \frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$
 $= \int_{1}^{2} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$
 $= \frac{1}{\sqrt{x}} \left[\frac{1}{\sqrt{x}} \tan^{-1}(\frac{1}{\sqrt{x}}) \right] dx$



$$\begin{aligned} \int \int xy \, dx \, dy &= \int \int |xy| \, dx \, dy \\ &= \int \int \left[\frac{y}{x^{+}} \int_{0}^{1-y} dy \right] = \int \left[\frac{y}{2}(1-y)^{+} - (y) \right] \, dy \\ &= \frac{y}{2} \int y (1-y)^{+} \, dy = \frac{y}{2} \int y (1+y)^{+} - 2y \, dy \\ &= \frac{y}{2} \int y (1-y)^{+} \, dy = \frac{y}{2} \int \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - 2y \, dy \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} - \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} + \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} + \frac{y}{4} + \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} + \frac{y}{4} + \frac{2}{2} x \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} \right] \\ &= \frac{y}{2} \left[\frac{y}{2} + \frac{y}{4} + \frac{y}{4$$

$$\begin{split} \iint xy \, dx \, dy &= \iint_{2}^{x^{2}} xy \, dx \, dy \\ &= \iint_{0}^{x} \left[\frac{y \, x^{2}}{2} \int_{2}^{2a} dy = \frac{1}{2} \int_{0}^{a} y \left[x^{2} \int_{2ay}^{2a} dy \right] \\ &= \frac{1}{2} \int_{0}^{a} y \left[(2a)^{2} - (2ay)^{2} \right] \, dy \\ &= \frac{1}{2} \int_{0}^{a} y \left[4a^{2} - 4ay \right] \, dy \\ &= \frac{1}{2} \int_{0}^{a} \left[ha^{2}y - 4ay^{2} \right] \, dy \\ &= \frac{1}{2} \int_{0}^{a} \left[ha^{2}y - 4ay^{2} \right] \, dy \\ &= \frac{1}{2} \left[\frac{4a^{2}y^{2}}{2} - \frac{4ay^{3}}{3} \right]_{0}^{a} = \frac{1}{2} \left[\frac{4a^{2}(a^{2})}{2} - \frac{4a(a^{3})}{3} \right] \\ &= \frac{1}{2} \left[\frac{4a^{4}}{2} - \frac{4a^{4}}{3} \right] = \frac{2}{2a^{4}} \left[\frac{1}{2} - \frac{1}{3} \right] \\ &= 2a^{4} \left[\frac{3-2}{6} \right] = \frac{2a^{4}}{3} \left(\frac{1}{2} - \frac{1}{3} \right] \\ &= \frac{1}{2} \left[\frac{4a^{4}}{2} - \frac{4a^{4}}{3} \right] = \frac{2}{2a^{4}} \left[\frac{1}{2} - \frac{1}{3} \right] \\ &= 2a^{4} \left[\frac{3-2}{6} \right] = \frac{2}{4a^{4}} \left(\frac{1}{2} \right) \\ &\int \overline{I} = a^{4} \int_{3}^{3} \overline{J} \\ &= 2a^{4} \left[\frac{3-2}{6} \right] = \frac{2}{4a^{4}} \left(\frac{1}{2} \right) \\ &\int \overline{I} = a^{4} \int_{3}^{3} \overline{J} \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] \\ &= \frac{1}{2} \left[\frac{1}{2} \left$$

6

 $y = x^{2} \text{ and } y = x.$ Solur - tile regron bounded by $y = 2t^{2} \rightarrow 0 \text{ ond } y = x \rightarrow 0$ from $0 \neq 0$ $x = x^{2} \rightarrow x^{2} - x = 0$ x(x-1) = 0 $y = x \quad y = x^{2}$ $y = x \quad y = x^{2}$

0 (0,0)

·= y=x => 19=1

 \mathcal{D}

$$\begin{aligned} \underbrace{\lim_{x \to 0} b_1 \cdot x_{-1}}_{y = 0 \ b \ x_{-1}} \\ y = 0 \ b \ y_{-1-x}} \\ \int \int (x^* + y^*) dx dy = \int \int (x^* + y^*) dy dx \\ &= \int \int \int (x^* + y^*) dy dx \\ &= \int \int \int (x^* + y^*) dy dx \\ &= \int \int \int (x^* - x^* + \frac{(1-x)^3}{3} - \frac{1}{3} dx \\ &= \int \int \left[\frac{x^3}{3} - \frac{x^4}{4} + \frac{(1-x)^4}{3x(-4)} \right]^{\frac{1}{9}} \\ &= \int \left[\frac{x^3}{3} - \frac{x^4}{4} + \frac{(1-x)^4}{-12} \right]^{\frac{1}{9}} \end{aligned}$$

۲

$$= \left[\frac{x^{3}}{3} - \frac{x^{4}}{4} - \frac{(1-x)^{4}}{12}\right]^{\prime}$$

$$= \left[\frac{y_{3}}{3} - \frac{y_{4}}{4} - \frac{(1-1)^{4}}{12}\right] - \left[\frac{\phi}{0} - \frac{(1-\phi)^{4}}{12}\right]^{\prime}$$

$$= \left(\frac{y_{3}}{3} - \frac{y_{4}}{4}\right) + \left(\frac{1}{12}\right)$$

$$= \frac{y_{3} - \frac{y_{4}}{4}}{12} + \frac{4x-3+1}{12} = \frac{5-3}{12} = \frac{2}{12}$$

 $= \frac{1}{3} - \frac{1}{24} + \frac{1}{12} = \frac{4 - 3 + 1}{12} = \frac{5 - 5}{12}$ $\boxed{I = \frac{1}{6}}$

Erample-1 Find the value of J Ey dredy SOMU Civen JJ ey dx dog $= \int_{a}^{b} \underbrace{\underline{e}}_{y}^{y} [x]_{a}^{y} dy = \int_{a}^{b} \underbrace{\underline{e}}_{y}^{y} (y) dy$ $=\int \bar{e}^{y} dy = \left[\bar{e}^{y} J^{\infty} = \bar{e}^{y} J^{\infty} \right]$ $= \left[(-e)^{2} - (-e)^{2} \right] = \left[(0 - (-i)^{2} - (-i)^{2} \right] = 1$ I = IFind the limits of Integralions in the double Example - (12) Integral SJ & (11, 4) dx dy, where R is in the first anadrant and bounded by x=1, y=0, $y^2=4x$. Solut Griven region x=1; y=0; y=4x y=4x y=54x Se, y=4x y=25x (x=1)y=+(1) >x y=4=) y= 12 A(1.0) 0(90 (4=0) 19=2

 $\lim_{x \to 0} t x = 0$ y = 0 to $y = 2\sqrt{x}$. (9

6
Example-13 Evaluate]] xy dridy over the positive chuadrant
of the circle $2c^2 + y^2 = a^2$.
<u>solui</u> Criver that positive aucidient of the circle $x^2 + y^2 = a^2$
$\lim_{y \to 0} t_0 = 0$ to $y = 0$
$x = 0$ to $x = \sqrt{a^2 - y^2}$ $(x = 0)$
$\iint xy dx dy = \iint xy dx dy$
$= \int_{0}^{0} \frac{y}{2} \left\{ \frac{x^{2}}{2} \right\}_{0}^{\sqrt{a^{2}-y^{2}}} dy$ $= \int_{0}^{0} \frac{y}{2} \left\{ \frac{x^{2}}{2} \right\}_{0}^{\sqrt{a^{2}-y^{2}}} dy$ $= \int_{0}^{0} \frac{y}{2} \left\{ \frac{x^{2}}{2} \right\}_{0}^{\sqrt{a^{2}-y^{2}}} dy$
$= \int_{0}^{q} y \left[\sqrt[y]{a^2 - y^2} \right]^{2} dy$
$= \frac{1}{2} \int \frac{1}{2} (a^{2} - y^{2}) dy = \frac{1}{2} \int (a^{2}y - y^{3}) dy$
$= \frac{1}{2} \left[\frac{a^{2}y^{2}}{2} - \frac{y^{4}}{4} \right]_{0}^{\alpha} = \frac{1}{2} \left[\frac{a^{2}(a^{2})}{2} - \frac{a^{4}}{4} \right]_{0}^{\alpha}$
$= \frac{1}{2} \left[\frac{a^{4}}{2} - \frac{a^{4}}{4} \right]$
$= \frac{a_{12}^{4}}{2} \left[\frac{1}{2} - \frac{1}{4} \right]$
$= \frac{a^{4}}{2} \left[\frac{2-1}{4} \right] = \frac{a^{4}}{2} \left[\frac{1}{4} \right]$
$I = \frac{a^4}{8}$

The the Area whing double integration
Find the Area whing double integration
Find the Area whing double integration
Find by double integration, the area between the
Parabolas
$$y' = Ax$$
 and $x' = Ay$.
Solution that $y' = Ax$ and $x' = Ay$.
 $y' = Ax$
 $y' = Ay$
 $y' = Ax$
 $y' = A$

(12) $= \int \frac{4y^{3/2}}{3} - \frac{y^{3}}{12} \int_{0}^{4} = \int \frac{4(4)^{3/2}}{3} - \frac{(4)^{3}}{12} \int_{0}^{3}$ $= 4(8) - \frac{64}{12} = \frac{32}{3} - \frac{64}{12} = \frac{32}{3} - \frac{16}{3}$ Astea = 16/3 Using double Integral, find the area Example-@ bounded by y = x and $y = x^2$. Corverthat y=x->0 and y=x2-50/n1-**∋**(2) from Ode (111) $(D =) y = x^{L}$ x=x1 x-x=0 x(x-1)=00(907 X=0; X-1=0 Limits : JX=1 x = 0 to x = 1 $y = \chi^2$ y=x to Required Area = . If dydx $= \int_{x^2}^{x} dy dx = \int_{x^2}^{x} [y]_{x^2}^{x} dx$ $= \int (x - x^2) dx$ $\left[\frac{\chi^2}{2}-\frac{\chi^3}{2}\right]$

$$= \left[\frac{x}{4} - \frac{x^{3}}{3}\right]_{0}^{1}$$

$$= \left[\frac{y}{4} - \frac{y_{3}}{3}\right] - \left[0\right]$$

$$= \frac{y}{4} - \frac{y_{3}}{3} = \frac{3-2}{6}$$

$$\boxed{Atea} = \frac{y_{6}}{6}$$

$$\boxed{Atea} = \frac{y_{6}}{6}$$

$$\boxed{Atea} = \frac{y_{6}}{4}$$

$$\boxed{Cucle \ x^{2} + \frac{y}{2} = a^{2}}$$

$$\boxed{Cucle$$

 $= \left[\frac{\alpha}{2} (0) + \frac{\alpha}{2} \frac{\beta}{2} \frac$ $= 0 + a_{2}^{2} Sim^{-1}(1)$ = a/2 Dim'(1) $= a_{1/2}^{\prime} (\overline{r}_{2})$ $I = \frac{ma^{2}}{2} \parallel$. The Required Area of the circle is AXI $= \frac{2}{4} \times \frac{\pi a}{2}$ $= 2\pi a^2 / r$

(1A)

Example \overline{B} Evaluate $\iint xy dx dy$ over the Jegron in the positive duadrant bounded by $\frac{x}{a} + \frac{y}{b} = 1$.

Solur
Criben that
$$\frac{x}{a} + \frac{y}{b} = 1 \longrightarrow 0$$

 $p_{wt} [x=0] \text{ An } \text{ sq. } 0$
 $\frac{a}{a} + \frac{y}{b} = 1$
 $y_{b} = 1$
 $y_{b} = 1$
 $y_{b} = 5$
 $y_{b} = 5$
 $y_{b} = 1$
 $y_{b} = 5$
 $y_{b} = 1$
 $y_{b} = 1$
 $y_{b} = 5$
 $y_{b} = 1$
 $y_{b} = 1$
 $y_{b} = 5$
 $y_{b} = 1$
 $y_{b} = 1$
 $y_{b} = 5$
 $y_{b} = 1$
 $y_{b} = 5$
 $y_{b} = 1$

and
$$\frac{x}{a} + \frac{y}{b} = 1$$

 $\frac{x}{a} = 1 - \frac{y}{b}$
 $\frac{x}{a} = \frac{1 - \frac{y}{b}}{x = a(1 - \frac{y}{b})}$
 $y = 0 = b = y = b$
 $x = 0 = b = x = a(1 - \frac{y}{b})$
 $\int \int xy \, dx \, dy = \int \int xy \, dx \, dy$
 $= \int^{b} y \left[\frac{x^{1}}{2} \right]^{a} \frac{a(1 - \frac{y}{b})}{ay}$
 $= \frac{y}{2} \int^{b} y \left[x^{2} \right]^{a} \frac{a(1 - \frac{y}{b})}{ay}$
 $= \frac{y}{2} \int^{b} y \left[a(1 - \frac{y}{b})^{2} dy \right]$
 $= \frac{y}{2} \int^{b} y \left[a^{2} \left(-\frac{y}{b} \right)^{2} dy \right]$
 $= \frac{a}{2} \int^{b} y \left(1 + \frac{y}{b} - \frac{2y}{b} \right) dy$
 $= \frac{a}{2} \int^{b} \left[y + \frac{y^{2}}{b^{2}} - \frac{2y^{4}}{b} \right] dy$
 $= \frac{a}{2} \left[\frac{y^{4}}{2} + \frac{y^{4}}{4b^{4}} - \frac{2y^{3}}{3b} \right]^{b}$
 $= \frac{a}{2} \left[\frac{b^{2}}{2} + \frac{b^{4}x^{2}}{4b^{4}} - \frac{2b^{4}}{3b} \right] - \left[0 \right]$
 $= \frac{a}{2} \left[\frac{b^{2}}{2} + \frac{b^{4}}{4b^{4}} - \frac{2b^{4}}{3b} \right]$

form O EO O= y=x (D=) y= 4-X y=2 x= 4-x y= 252 2X=4 y= 52, -52 x = 4/2 X=2)

(17)

3.1

Lime 5 -y=0 to y=12 $x=y^{2}$ to $x=4-y^{2}$ Required Alea = I Jolady 0 92 $= \int_{0}^{\sqrt{2}} [x]_{y^2}^{4-y^2} dy$ $=\int^{\sqrt{2}} [4-y^{2}-y^{2}] dy$ $=\int^{\sqrt{2}}(4-2y^{\prime})dy$ $= \left[4y - \frac{2y^3}{3} \right]^{\sqrt{2}}$ = [452 - 2(12)3] - [0] $= 4\sqrt{2} - 2(2\sqrt{2})$ $= 4\sqrt{2} - \frac{4\sqrt{2}}{3} = 4\sqrt{2} \left[1 - \frac{1}{3} \right]$ $= 4\sqrt{2} \left[\frac{3-1}{3} \right] = 4\sqrt{2} \left(\frac{2}{3} \right) = \frac{3}{3}\sqrt{2}$ Astea = 852

(8) 61 - [1895 - DA] -WE = (BITHA - (SEITA =

	19
Chapter - 12. 2 [Double Integration in Polar	
. Coordinates]	
Example-0 Evaluate j g coso solar da.	-
Solme Criven that 5th Sardo	
$= \int_{0}^{T} \left[\frac{\gamma^{2}}{2}\right]_{0}^{Cos0} do = \int_{0}^{T} \frac{\cos^{2} \sigma}{2} d\sigma$	-
$= \frac{1}{2} \int \frac{1}{2} \cos^2 \omega d\omega = \frac{1}{2} \int \frac{1}{2} (1 + \cos 2\omega) d\omega$	
$= \frac{1}{2} \left[\frac{0 + 9in 20}{2} \right]_{0}^{\pi}$	
$= Y_2 \left\{ \left[\frac{\pi + S \ln(2\pi)}{2} - \left[\frac{\sigma + S \ln(2\pi)}{2} \right]^2 \right\}$	
$= \frac{1}{2} \left[\frac{\pi}{2} + 0 \right] - \left[0 + 0 \right]^{2}$	
$= \frac{1}{2} \left(\frac{\pi}{2} \right)$	
$I = N_2$	
Example-@ Evaluate JJ & drdo.	
Some Criven that It asimo.	
$= \int \left[\frac{\gamma^2}{2}\right]^2 d\vartheta = \frac{1}{2} \int \left[\frac{\gamma^2}{2}\right]^2 d\vartheta$	

$$= \frac{1}{2} \int_{a}^{\pi} (\alpha sho)^{2} d\sigma = \frac{1}{2} \int_{a}^{\pi} \alpha^{2} sh^{2} \sigma d\sigma$$

$$= \frac{1}{2} \int_{a}^{\pi} \frac{1}{2} \int_{a}^{\pi} \frac{1}{2} (\alpha sho)^{2} d\sigma = \frac{1}{2} \int_{a}^{\pi} \frac{1}{2} \frac{1}{2}$$

= a/3]" (1+ Cuso)" sitio do Put, Z = 1+6050 Z = 1 + lus(0) = 1 + 1 = 20=0=) $dz = -Smod \theta$ -dz= Smodo $\phi = \pi \Rightarrow z = i + log \pi = i - i = 0$ $= \alpha_3^3 \int z^3 (dz)$ $\int W \cdot k - \tau \int f(n) dx = -\int f(n) dx^{2}$ $= \frac{a^3}{3} \int^2 z^3 dz$ $= a_{3}^{2} \left[\frac{z_{4}^{4}}{h} \right]_{0}^{2} = a_{3}^{2} \left[\frac{(a_{3})^{2}}{h} \right]_{0}^{2}$ $= a_{3}^{2} \left(\frac{1}{4} \right) = a_{3}^{2} (4)$ $I = \frac{4a^2}{3}$ Example-@ Evaluate II rsinodralo over the Cardioid ~= a (1-cuso) above the initial line." Solnt Given that cardiard ~= a (1- wso) s=a(1-640) Limets: s=0 Q=0 x $\gamma = \alpha(1 - \omega_{30})$ r=0 0=17 a=o to a [[rsinodrdo =]] rsinodrdo act-lase) $= \int_{-\infty}^{\infty} Gim \Theta\left[\frac{r^2}{2}\right] d\Theta$

 $= \frac{1}{2} \int \int \int d\theta \left[\frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \frac{1}{2} \int \frac{1}{2} \frac{1}{2$ = 1/2 5" Sho [a(1-600)] do = 1/2 1" Shu a (1-Coso) do = a/2 ["(1-6030)2 Sino do $a = 0 \Rightarrow z = 1 - \cos(0) = 1 - 1 = 0$ Put, Z= 1- Coso $dz = 3 \ln 0 d\bar{0}$ $0 = \pi \Rightarrow z = 1 - (25)(\pi) = 1 - (-1) = 1 + 1$ $= a_{2}^{2} \int z^{2} dz$ $= a_{2}^{\prime} \left[\frac{z^{3}}{z} \right]_{2}^{2} = a_{6}^{\prime} \left[z^{3} \right]_{2}^{2} = a_{6}^{\prime} \left[(z)^{2} - (y) \right]$ $= a^{2}/(6^{2})^{4} = \frac{a^{2}}{3}(4)$ $T = \frac{4a^2}{3}$ Example-5 Find the area of the Cardioid r=a(1+Coso). Solw! Given that r=a(1+6030) r= a (1+600 Limits: r=o to r=a(1+(uso) 7=0 0=-T to 0=T

$$Tb \quad \beta equiled \quad alea = \iint r dr d\theta$$

$$= \int_{-\pi}^{\pi} \int_{0}^{\alpha(1+los)} r dr d\theta$$

$$= \int_{-\pi}^{\pi} \left[\frac{\gamma_{1}}{2} \int_{0}^{\alpha(1+los)} d\theta = \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[\frac{\gamma_{1}}{2} \int_{0}^{\alpha(1+los)} d\theta \right] d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[(1+los) \right]^{2} d\theta = \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} dt (1+los)^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[(1+los) \right]^{2} d\theta = \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} dt (1+los)^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[(1+los) \right]^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[(1+los) \right]^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[(2\log^{2}(q_{2})) \right]^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[2\log^{2}(q_{2}) \right]^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{-\pi}^{\pi} \left[2\log^{2}(q_{2}) \right]^{2} d\theta$$

$$= \frac{\gamma_{2}}{2} \int_{0}^{\pi} \left[\log^{2}(q_{2}) \right]^{2} d\theta$$

$$= \frac{\gamma_$$

2.2

Example (9) Find the area of the region outside the inner circle

$$Y=2$$
 Coso and inside the outer circle $Y=A$ Coso.
Solur (vitor that $Y=2$ Coso and $Y=A$ coso
 $0=0$ to $0=7/2$
 $Required Area = 2 \int Y dY d0$
 $= 2 \int \frac{7/2}{2} \int x dY d0$
 $= 2 \int \frac{7/2}{2} \int x dY d0$
 $= \int 0^{7/2} \int x dY d0$

Chapter -5.3 [Change the order of Integration] Note: $\iint f(x,y) dx dy = \iint f(x,y) dy dx$ Example- O Change the order of Integration in the Integral SI 22 dy dx. and Evaluate. I your x=you x=you (x=0) x=0 <u>solui</u> Curven that $\int \int x^{L} dy dx$ (0,0) ()=0) aiver Limit! x=0 to x=a y=0 to y=esax y= 402 Given object = dyda y=han TO change the order = dxdy Put X=a y=haca) changed Limit : y=0 to y=2ee y= Har y=201 $90 = \frac{y^2}{4a} t \cdot \chi = a$ a zax $\int \int \frac{d^2}{dy} dy dy = \int \int \frac{d^2}{dy} \frac{dy}{dy} dy = \int \int \frac{d^2}{dy} \frac{dy}{dy} dy$ $= \int_{0}^{1} \left[\frac{3c^{3}}{3}\right]_{y}^{a} dy = \frac{1}{3} \int_{0}^{1} \left[3c^{3}\right]_{\frac{y}{1}}^{a} dy$ = $\frac{1}{3}\int \frac{1}{2} \left[\alpha^{3} - \left(\frac{y^{2}}{4\alpha}\right)^{3}\right] dy$

(26) = $\frac{1}{3} \int \left[a^3 - \frac{y^6}{(4a)^3} \right] dy$ $= \frac{1}{3} \int \left[a^{2} - \frac{y^{6}}{64a^{2}} \right] dy$ $= \frac{1}{3} \left[\frac{a^3y - \frac{y^7}{7x64a^3}}{\frac{7}{7x64a^3}} \right]^{2a}$ $= \frac{1}{3} \left[a^{3}y - \frac{y^{7}}{448a^{3}} \right]^{2a} = \frac{1}{3} \left[a^{3}(e^{a}) - \frac{(e^{a})^{7}}{448a^{3}} \right]$ $= \frac{1}{3} \left[\frac{2a^{4}}{448a^{3}} - \frac{128a^{7}}{448a^{3}} \right] = \frac{1}{3} \left[\frac{2a^{4}}{4a^{3}} - \frac{128a^{4}}{4a^{3}} \right]$ $= \frac{1}{3} \left[2a^{4} - \frac{16a^{4}}{56} \right] = \frac{1}{3} \left[2a^{4} - \frac{4a^{4}}{14} \right]$ $= \frac{1}{3} \left[\frac{2a^4}{2a^4} - \frac{2a^4}{7} \right] = \frac{1}{3} \left[\frac{14a^4 - 2a^4}{7} \right]$ $= Y_{3} \left[\frac{17}{2} \alpha^{4} \right] = \frac{4\alpha^{4}}{7}$ $I = \frac{4a^4}{7}$ change the order of integration in [[(x*+y*) dydx. Escample-@ and hence Evaluate it. Criben that I J be'ty') dy dr Solul-Criven Limet - x = a to x = a y=x to y=a

(27) Given order = dydx. Change the order = dredy y≈a (9.0) (2c=0) Changed Limit: Hy=x y=o to y=a Z (0,0) (4=0) x=oto x=y $\int \int (x^{2}+y^{2}) dy dx = \int \int (x^{2}+y^{2}) dx dy$ $= \int \left[\frac{x^{2}}{3} + y^{2}x\right]^{2} dy$ $= \int \left[\frac{y'}{3} + y'(y) \right] - [v] dy$ $= \int \left[\frac{y^3}{3} + y^2 \right] dy$ $= \left[\frac{y^4}{12} + \frac{y^4}{4} \right]^{\alpha}$ $= \left[\frac{\alpha^{4}}{12} + \frac{\alpha^{4}}{4} \right]$ $\frac{a^{4}+3a^{4}}{12}$ = 4/014 = 04/3 I

Example 3 change she order of Integration and Evaluate

$$\int_{a}^{a} \int_{a}^{1/7a} (x^{2}+y) dy dx.$$
Solut:
Given that $\int_{a}^{a} \int_{a}^{1/7a} (x^{2}+y) dy dx.$
(int)
 $y = 7/a$
(int)

(29) $= \left[\frac{a^3}{12} + \frac{a}{4} - \frac{a^3}{21} - \frac{a}{5} \right]$ $=\left(\frac{a^{2}}{12}-\frac{a^{2}}{21}\right)+\left(\frac{a}{4}-\frac{a}{5}\right)$ $=\left(\frac{7a^{3}-4a^{3}}{84}\right)+\left(\frac{5a-4a}{20}\right)$ $=\frac{3a^3}{84}+\frac{a}{20}$ $\overline{T} = \frac{\alpha^3}{28} + \frac{\alpha}{20}$ Example-3 change the order of sutegration and hence He integral ja ja-x dy dy. Evaluate Cuivan that I 2a-x 2cy dyda n/a Criven order = dy dx $\lim_{x \to \infty} t_x = 0$ to $x = \alpha$ Groven $y = \frac{x}{a}$ to y = 2a - x(0,20) $ay = x^2$ (x20) y=29-x x= 24-4 =Jay (0,a) (4=9) II (9,0) (9=0) (9=0) (0,0)

(30) To change the order = dady Changed Limit for II Changed Limit for Iz y = a t y = 2ay=o to y=a x=0 to x= 24-4 x=0 to x= Vay $T_1 = \iint xy \, dx \, dy = \iint \frac{y}{2} \frac{x^2}{2} \int \frac{y}{2} \, dy = \frac{y}{2} \int \frac{y}{2} \frac{x^2}{2} \int \frac{y}{2} \, dy$ $= \frac{1}{2} \int y (tay) dy = \frac{1}{2} \int y (ay) dy = \frac{1}{2} \int ay^2 dy$ $= \frac{1}{2} \left[\frac{\alpha y^{3}}{3} \right]_{0}^{\alpha} = \frac{1}{2} \left[\frac{\alpha (\alpha^{3})}{3} \right] = \frac{1}{2} \left(\frac{\alpha^{4}}{3} \right)$ $I_1 = \frac{a^4}{6}$ $I_2 = \iint xy \, dx \, dy = \iint \underbrace{[\underline{y} \underline{x}']}_{2}^{2q-y} \, dy = \frac{1}{2} \iint [\underline{y} \underline{x}']_{0}^{2q-y} \, dy$ $= \frac{1}{2} \int \frac{2^{\alpha}}{[y(2\alpha - y)^{2}]} dy = \frac{1}{2} \int \frac{2^{\alpha}}{[x(2\alpha - y)^{2}]} dy = \frac{1}{2} \int \frac{2^{\alpha}}{[x(2\alpha - y)^{2}]} dy$ $= \frac{1}{2} \int \frac{2\alpha}{(4\alpha^{2}y + y^{3} - 4\alpha y^{2})} dy$ $= \frac{1}{2} \left[\frac{24a^{2}y^{2}}{2} + \frac{y^{2}}{4} - \frac{4ay^{3}}{3} \right]^{2a}$ $= \frac{1}{2} \left[2a^{2}y^{2} + \frac{y^{4}}{4} - \frac{4ay^{3}}{3} \right]^{2a}$ $= \frac{1}{2} \int \left[2a^{2} (a)^{2} + \frac{(2a)^{4}}{4} - \frac{4a(2a)^{3}}{7} - \left[2a^{2} (a^{2}) + \frac{a^{4}}{4} - \frac{4a(a^{2})}{3} \right] \right]$

9, $= \frac{1}{2} \left\{ \frac{1}{2} \frac{2a^{4}}{a^{4}} (4a^{4}) + \frac{16a^{4}}{4} - \frac{4a(8a^{3})}{3} \right] - \left[2a^{4} + \frac{a^{4}}{4} - \frac{4a^{4}}{3} \right]^{2} \right\}$ $= \frac{1}{2} \int \left[\frac{8a^4 + 4a^4 - \frac{32a^4}{3}}{3} - \left[\frac{2a^4 + \frac{a^4}{4}}{4} - \frac{4a^4}{3} \right] \right]$ $= \frac{1}{2} \left\{ \frac{12a^4 - 32a^4 - 2a^4 - \frac{a^4}{4} + \frac{4a^4}{3}}{3} \right\}$ $= \frac{1}{2} \int \frac{10a^{4} - \frac{a^{4}}{4} - \frac{28a^{4}}{3}}{4} = \frac{a^{4}}{2} \left[\frac{10 - \frac{1}{4} - \frac{28}{3}}{3} \right]$ $= q_{2}^{4} \left[\frac{120 - 3 - 112}{12} \right] = \frac{q_{4}}{2} \left[\frac{120 - 1157}{12} \right]$ $= \frac{\alpha_2^{\prime\prime}}{2} \begin{bmatrix} \frac{\gamma_2}{\gamma_2} \end{bmatrix}$ $I_2 = \frac{50^4}{24}$ TAB TO Y I - HAR = $I_1 + I_2$. I $= \frac{a^4}{6} + \frac{5a^4}{24}$ $= \frac{4a^4 + 5a^4}{24}$ $= \frac{9a^4}{24}$ $I = \frac{3a^4}{8}$

(32) Example-6 change the order of Integration JS ye drady. Soln' Criver that Joj y ey'x dx dy Criver Dint: - y=0 to y=0 21=0 to x=y y= oo 7 (9(=0) Greben order = dally (4=0) To change the order]= dy doi) Changed Limit 1- 2=0 to 2=0 314 ターンは リーの $\int \int y \bar{e}^{\frac{y}{x}} dx dy = \int \int y \bar{e}^{\frac{y}{x}} dy dx$ $= \frac{1}{2} \int 2y e^{-\frac{y}{x}} dy dx = \frac{1}{2} \int y e^{-\frac{y}{x}} d(y^2) dx$ = $\frac{1}{2} \int \frac{e^{-\frac{y}{2}}}{\frac{e^{-\frac{y}{2}}}{-\frac{y}{2}}} \int \frac{e^{-\frac{y}{2}}}{\frac{e^{-\frac{y}{2}}}{-\frac{y}{2}}} \int \frac{e^{-\frac{y}{2}}}{-\frac{y}{2}} \int \frac{e^{-\frac{y}$ $= \frac{1}{2} \int_{0}^{\infty} \left[0 - (-x e^{\frac{\pi i}{2}}) \right] dx = \frac{1}{2} \int_{0}^{\infty} x e^{\frac{\pi i}{2}} dx$ $= \frac{1}{2} \left[x \frac{e^{x}}{e_{1}} - (1) \frac{e^{x}}{e_{1}} \right]^{\infty}$ $= \frac{1}{2} \left[-x \bar{e}^{x} - \bar{e}^{x} \right]_{0}^{\infty}$ $\begin{bmatrix}
\omega \cdot k \cdot \tau \\
\bar{e}^{*} = 0 \\
e^{*} = 1
\end{bmatrix}$ $= \frac{1}{2} \left[\left[\tilde{e}^{*} - \tilde{e}^{*} \right] - \left[(\omega) e^{\circ} - e^{\circ} \right] \right]$ $= \frac{1}{2} \left[0 - (-1) \right] = \frac{1}{2} \left(1 \right)$ I = 1/2

(3)
Example (2) Change the order of Integration and have Evaluated.

$$\int_{1}^{10} \int_{2}^{2\pi} (xy \, dy \, dx.)$$

$$\int_{1}^{10} \int_{1}^{2\pi} (xy \, dy \, dx.)$$

$$\int_{1}^{10} \int_{1}^{10} (xy \, dy \, dx.)$$

$$\int_{1}^{10} (xy \, dy \, dx.)$$

$$\int$$

$$= \frac{1}{2} \left[\frac{hay^{5}}{3} - \frac{y^{6}}{6xka^{2}} \right]^{4a}$$

$$= \frac{1}{2} \left[\frac{hay^{5}}{3} - \frac{y^{6}}{96a^{4}} \right]^{4a}$$

$$= \frac{1}{2} \left[\frac{ha(ha)^{3}}{3} - \frac{y^{6}}{96a^{4}} \right]^{-1} - \left[0 \right]$$

$$= \frac{1}{2} \left[\frac{ha(ha)^{3}}{3} - \frac{hoq6a^{6}}{96a^{4}} \right]$$

$$= \frac{1}{2} \left[\frac{256a^{4}}{3} - \frac{hoq6a^{4}}{96} \right]$$

$$= \frac{a^{4}}{2} \left[\frac{256}{3} - \frac{hoq6a^{4}}{96} \right]$$

$$= \frac{a^{4}}{2} \left[\frac{256}{3} - \frac{hoq6a^{4}}{96} \right]$$

$$= \frac{a^{4}}{2} \left[\frac{31(2-50) - hoq6}{96} \right] = \frac{a^{4}}{2} \left[\frac{ha^{4}}{36} \right] = \frac{a^{4}}{2} \left[\frac{51h}{12} \right]$$

$$= \frac{a^{4}}{2} \left[\frac{112}{3} \right] = a^{4} \left(\frac{64}{3} \right)$$

$$\boxed{I = \frac{6ha^{4}}{3}}$$

(95) Example - (3) change the order of integration in JJ Ey dydx and then Evaluate. 4=0 Solni Criven that Jos and goda y=2-(x=0) Creven limet x=m x=o to x=00 (4=0) y=x to y=00 Corner order = dy dx To Change the order = dr dy changed limit :- y = 0 to y = 00 x=ot x=y $\int \int \frac{e^{y}}{y} dy dx = \int \int \frac{e^{-y}}{y} dx dy$ = j (ey)[x] dy $= \int_{-y}^{\infty} \frac{e^{y}}{y} \left[y - 0 \right] dy$ $= \int_{-\infty}^{\infty} \frac{\partial^{2} y}{\partial y} (y) dy$ = S ey dy

36 $=\int e^{y} dy$ $= \left[\underbrace{e^{y}}_{-1} \right]^{2} = \left[- \underbrace{e^{y}}_{0} \right]^{2} = \left[- \underbrace{e^{-e^{y}}}_{0} \right]^{2} = \left[- \underbrace{e^{-e^{y}}}_{0} \right]^{2}$ = [0 - (-1)] = 1I=1 84 2 2 L =

(3)
Chapter-3:4 [change into polar coordinates]
Mutain

$$k \neq x = x (u, u, v); y = x Sin u = x^2 + y^2$$

 $dx dy = dy dx = x chrolo$
Example O Evaluate by changing to polar co-ordinates
 $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$.
Solut: Civen that $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$
Civen that $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$
 $(y = 0)$
 $k \neq x = x (u, u); y = x Sin u$
 $x = y t x = a$
To change into Polar co-ordinates
 $k \neq x = x (u, v); y = x Sin u$
 $x' + y' = x^2; dx dy = x clrdo$
 $y = a$
 $T = a$
 $T = a$
 $T = a = x curve for the there is a seco for the there is a$

r=o to r=aseeo

$$\int_{0}^{A} \int_{y}^{a} \frac{x}{x^{2}+y^{2}} dx dy = \int_{0}^{\pi/4} \int_{y}^{aseco} \frac{26}{7x} \frac{6000}{7x} \frac{x^{2}}{x^{2}} \frac{x^{2}}{x^{2}$$

63)

Example (2) By changing to polar co-ordinates, find the value

$$uf \int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}} dx dy.$$

Solver that $\int_{0}^{a} \int_{y}^{a} \frac{x^{1}}{\sqrt{x^{2}+y^{2}}} dx dy$
Given that $\int_{0}^{a} \int_{y}^{a} \frac{x^{1}}{\sqrt{x^{2}+y^{2}}} dx dy$
 $0 = \pi h$
 $0 = \pi h$
 $0 = \pi h$
 $y = 0$
 $x = y$ to $y = a$
 $x = y$ to $x = 0$
 $x = y$ to $x = 0$
 $\frac{To}{2} \frac{change}{mto} \frac{mto}{polar} \frac{co-ordinaty}{co-ordinaty}$
 $b = x^{2} + y^{2}; dx dy = x dx d0$

1:23

Here,
$$\overline{y} \equiv 0$$
 and $x \equiv a \equiv 0$ $T (as 0 \equiv a)$
 $T = \frac{Q}{hy 0}$
 $T = 0$ $\overline{b} = 0$ $\overline{b} = \frac{p}{h}$
 $T = \frac{asco}{\sqrt{T^2 + h^2}}$
 $\int_{0}^{0} \int_{0}^{\infty} \frac{x^2}{\sqrt{T^2 + h^2}} dx dy = \int_{0}^{p} \int_{0}^{0} \frac{x^2}{\sqrt{T^2}} \frac{x^2}{\sqrt{T^2}} dx^2 dy$
 $= \int_{0}^{p/h} \int_{0}^{asco} \frac{x^2}{\sqrt{T^2}} \frac{x^2}{\sqrt{T^2}} dx^2 dy$
 $= \frac{a^2}{3} \int_{0}^{p/h} \int_{0}^{asco} \frac{x^2}{\sqrt{T^2}} \frac{x^2}{\sqrt{T^2}} dx^2$
 $= \frac{a^2}{3} \int_{0}^{p/h} \int_{0}^{asco} \frac{x^2}{\sqrt{T^2}} \frac{x^2}{\sqrt{T^2}} \frac{x^2}{\sqrt{T^2}} dx^2$

(40) Example 3 Evaluate $\int_{0}^{\infty} e^{(x^{2}+y^{2})} dx dy$ by Polal. Co-ordinates. Graven that Jo jo E(x'+y') dxdy YEDO Curben limits. x=0 to x=00 y=oto y=00 TO Change sorts Polar coordinates >x let x = r(oso; y = rsino $x^2 = x^2 + y^2$; dx dy = x dy dyLimits: $\Theta = 0$ to $\Theta = \pi/2$ r=o to r= 00 $\int_{a}^{a}\int_{a}^{a}\frac{e^{(x^{2}+y^{2})}}{dxdy} = \int_{a}^{n/2}\int_{a}^{a}\frac{e^{x^{2}}}{e^{x^{2}}}dxdy$ put, $t = r^2$ $r = 0 \implies t = 0$ dt = 2rdr $r = \infty \implies t = \infty$ $\frac{dt}{2} = rdr$ $= \int_{0}^{N_{2}} \int_{0}^{\infty} \frac{dt}{2} d\theta = \frac{1}{2} \int_{0}^{N_{2}} \int_{0}^{\infty} \frac{dt}{2} d\theta d\theta$ $= -\frac{1}{2} \int \frac{\pi}{e^{t}} \int \frac{1}{e^{t}} \int \frac{1}{e^{t}} d\theta = -\frac{1}{2} \int \frac{\pi}{e^{t}} \int \frac{1}{e^{t}} e^{t} \int \frac{1}{e^{t}} d\theta$ = -1/2 j^{11/2} [0-1]do = 1/2 j^{11/2} do $= \frac{1}{2} \left[0 \right]_{0}^{\frac{1}{2}} = \frac{1}{2} \left[\frac{1}{2} - 0 \right] = \frac{1}{2} \left(\frac{1}{2} \right)$ 丁= 7/4 /

AV Example-A Change into Polan- Wordinates ja jai-xi dy dx. 50/n1-Given that I go dy dx (0,9) a -val-xc (x=0) x =a Given Limit: DE=-a to x=a (y=0) (-9,0) (a, o) x y = - Jai-x' to y= Jai-x' $y = \pm a \qquad y = \pm \sqrt{a^2 - x^2}$ (0,-9) $y' = a' - x^2 =) |x' + y' = a^2 /$ za To change into Polar Coordinates Limits! let x=rCoyo; y=rsino 0=0 to 0=25 ってナダ= ちょ; dxdy=rdrdo r=o to r=a Jai-x' $\int \int dy dx = \int \int r dr d\theta$ -a - Jat-x2 $= \int_{-\infty}^{2\pi} \frac{3^{2}}{2} \int_{0}^{2} d\theta = \frac{1}{2} \int_{0}^{2\pi} \frac{3^{2}}{2} \int_{0}^{2\pi} d\theta = \frac{1}{2} \int_{0}^{2\pi} \frac{3^{2}}{2} \int_{0}^{2\pi} \frac{3^{2}}{2} d\theta$ $= \frac{a^{2}}{2} \int_{-\infty}^{2\pi} d\theta = \frac{a^{2}}{2} \left[\theta \right]_{0}^{2\pi}$ = a/2 [21-0] $= d_{y}(2\pi)$ $= \alpha^{t} \pi$ I=ra"

$$= \int_{0}^{\pi/L} (1+(\omega s_{20})) d\sigma$$

$$= \left[0 + \frac{\sin \omega s_{0}}{2} \right]_{0}^{\pi/L}$$

$$= \left[\frac{\pi}{2} + \frac{\sin \omega s_{0}}{2} \right] - \left[0 + \frac{\sin \omega s_{0}}{2} \right]$$

$$= \left[\frac{\pi}{2} + \frac{\sin \omega s_{0}}{2} \right] - \left[0 \right]$$

$$= \left[\frac{\pi}{2} + \frac{\sin \omega s_{0}}{2} \right] - \left[0 \right]$$

$$= \left[\frac{\pi}{2} + \frac{1}{2} \right]$$
Example - $\left[0 \right]$

$$= \left[\frac{\pi}{2} + \frac{1}{2} \right]$$
Example - $\left[0 \right]$

$$= \left[\frac{\pi}{2} + \frac{1}{2} \right]$$

$$\frac{\pi}{2} = \frac{\pi}{2}$$
Governohimates and then Evaluate.
Solution that $\int_{0}^{\infty} \int_{0}^{\infty} \frac{\pi^{2}}{(2^{2}+9^{2})^{2}} dx dy$

$$\int_{0}^{3} \frac{y=a}{(2^{2}+9^{2})^{2}} dx dy$$

Limite 2=0 to 2=0/4

$$r=0 \ b \ r=a geco$$

$$\int_{0}^{\infty} \int_{y}^{\infty} \frac{x^{2}}{(x^{2}+y^{2})^{\frac{N}{2}}} dx dy = \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{\alpha geco}{2}} \frac{x^{2} \cos^{2} \sigma}{(x^{2})^{\frac{N}{2}}} r dr d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{\alpha geco}{2}} \frac{x^{2} \cos^{2} \sigma}{r^{\frac{N}{2}}} r dr d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{\alpha geco}{2}} \frac{x^{2} \cos^{2} \sigma}{r^{\frac{N}{2}}} r dr d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{\alpha geco}{2}} \frac{x^{2} \cos^{2} \sigma}{r^{\frac{N}{2}}} d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{\alpha geco}{2}} \frac{x^{2} \cos^{2} \sigma}{r^{\frac{N}{2}}} r d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{\alpha geco}{2}} \frac{x^{2} \cos^{2} \sigma}{r^{\frac{N}{2}}} d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}^{\frac{N}{2}} \frac{x^{2} \sigma}{r^{\frac{N}{2}}} d\sigma$$

$$= \int_{0}^{\frac{N}{2}} \int_{0}$$

Ð

45 chapter-5.5 [Triple Integration] Example-O Evaluate $\int_{0}^{2} \int_{0}^{2} zy'z dz dy dx.$ Golwi Griven that J2J3J2 xyz dz dydre $= \int \int \frac{xy'z'}{2} dy dx$ $= \int_{1}^{2} \int_{1}^{2} \left[\frac{\chi y^{2}(\theta)^{2}}{2} - \frac{\chi y^{2}(y)^{2}}{2} \right] dy dx$ $= \int_{2}^{2} \int_{3}^{3} \left(\frac{4xy'}{2} - \frac{xy'}{2} \right) dy dx$ $= \frac{1}{2} \int_{-\infty}^{2} \int_{-\infty}^{3} (4xy^{2} - xy^{2}) dy dx$ $= \frac{1}{2} \int_{0}^{2} \left[\frac{4xy^{2}}{3} - \frac{xy^{2}}{3} \right]_{0}^{3} dx$ $= \frac{1}{2} \times 3 \int_{0}^{2} \left[4 \chi y^{3} - \chi y^{3} \right]_{1}^{3} d\chi$ $= \frac{1}{6} \int_{0}^{2} \left[2+\chi \left(3\right)^{3} - \chi \left(3\right)^{3} \right] - \left[4\chi \left(3\right)^{2} - \chi \left(3\right)^{3} \right] d\chi$ $= \frac{1}{6} \int_{0}^{2} \left[4x(27) - 27x \right] - \left[4x - x \right] dx$ $= \frac{1}{6} \int \frac{1}{108x - 27x} - \frac{3x}{27x} dx$ $= \frac{1}{6} \int_{0}^{2} \frac{7}{78} x dx$

 $= \frac{1}{6}\int \frac{1}{78} \times dx = \frac{1}{6}\left[\frac{1}{28} \times \frac{1}{2}\right]^{2}$ $= \frac{1}{6} \int \frac{39x^2}{39x^2} = \frac{1}{6} \int \frac{39(2)^2}{39(2)^2} = 0$ $= \frac{1}{6} [39(4)] = \frac{1}{6} [156]$ 1 1 1 1 1 I = 26Example-(2) Evaluate JJJ (c+y+z) dz dy dx <u>solni</u> $\int \int \int (x+y+z) dz dy dx$ $= \int_{0}^{\alpha} \int_{0}^{\alpha} \chi z + yz + \frac{z^{2}}{2} \int_{0}^{\alpha} dy dx$ $= \int_{a}^{a} \int_{a}^{b} \left[cx + cy + \frac{c^{2}}{2} \right] dy dx$ $= \int_{a}^{a} \left[c_{x} y + \frac{c_{y}^{t}}{2} + \frac{c_{y}^{t}}{2} y \right] dx$ $= \int_{-\infty}^{\infty} \left[cbx + cb^{2} + c^{2}b \right] dx$ $= \int \frac{cbx^2}{2} + \frac{bex}{2} + \frac{c^2bx}{2} \right)$ [cba' + b'ca + c2ba] $= \frac{1}{2} \left[\frac{a^2bc + ab^2c}{abc^2} + \frac{ab^2c^2}{2} \right]_{1/2}$

(A7)

$$\frac{FXamMb-b}{F} = Valueb \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}y^{2}} \frac{dz \, dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$$

$$\frac{glnv}{Cxverhad} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dz \, dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}$$

$$= \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}}$$

$$= \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}-z^{2}-z^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}-y^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y^{2}-y^{2}})}{\sqrt{a^{2}-x^{2}-y^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{gln^{-1}(\sqrt{a^{2}-x^{2}-y$$

Example (5) Evaluate j' j' 2 d'a dy d'z Solnz Greven that J'J'X xiy ez dx dy dz $= \int \int e^{z} dz dy dx$ $= \int \int e^{z} \int dy dx$ $= \iint e^{1-x} [e^{x+y} - e^{3}] dy dx = \iint e^{x+y} - i J dy dx$ $= \int \int (e^{x}e^{y}-1) dy dx$ $= \int \left[e^{x} e^{y} - y \right]^{-1} dx = \int \left[e^{x} e^{t - x} - (t - x) \right]^{-1} - \left[e^{x} e^{0} - 0 \right] dx$ $= \int \left[\begin{array}{c} x + 1 - x \\ e & - (1 - x) \end{array} \right] - \left[\begin{array}{c} e^{x} \\ \psi \end{array} \right] dx$ $= \int [e' - 1 + x - e^{x}] dx = \int [e - 1 + x - e^{x}] dx$ $= \left[ex - x + \frac{x^2}{2} - e^x \right]_0$ $= \left[e(v) - 1 + \frac{1}{2} - e' \right] - \left[e(v) - o + \frac{9}{2} - e' \right]$ = [q' - 1 + 1/2 - e] - [-e]-171/2 +X I=1/2

Example-@ Evaluate JJJ dx dy dz over the first actant of the sphere x'sy'sz'=1. arver shot forst actent of the sphere scitistz'=1->0 Solu Put Z= y=0 la 29.0 0+Z=1=) Z=1 z = t = z = t = 1Jut Z=0 In 29,0 gt = 1 =) g= 1-x2 y=± J1-x2 to y=JI-x2 Eq. 0 =) x +y +z =1 z=1-x-y マエナリーズ-ツ~) Z = VI-x-y2/ to to Limite are !. x = o t x = 1y=0 to y=JI-x2 z=0 to z= JI-x-y2 $\int \int \int \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2-z^2}} = \int \int \int \int \int \frac{dz \, dy \, dx}{\sqrt{1-x^2-y^2-z^2}}$

 $= \int_{0}^{1} \int_{0}^{1-x^{2}} \frac{z}{\int_{1-x^{2}-y^{2}-z^{2}}^{2}} \int_{0}^{1-x^{2}-y^{2}-z^{2}} \frac{dy dx}{dy dx}$ $= \int \int \int \frac{\sqrt{1-x^{2}}}{2} \left(\frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}} \right) - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}{\sqrt{1-x^{2}-y^{2}-z^{2}}}} - \frac{\sqrt{1-x^{2}-y^{2}-z^{2}}}}{\sqrt{1$ $= \int \int \frac{1}{2} \int \frac{1}{2} \left[\frac{1}{2} \int \frac{1}{2}$ $= \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} [\pi/_{2} - \sigma] dy dx = \int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \frac{dy dx}{dy dx}$ $= \frac{1}{2} \int \int \frac{1}{2} \int \frac{1}{2} \frac{1}$ $= \pi/2 \int (\sqrt{1-x^{2}}) dx = \pi/2 \left[\frac{\pi}{2} \int \frac{1}{2} \frac$ $= \frac{1}{2} \int \left[\frac{1}{2} \sqrt{1-1} + \frac{1}{2} \frac{1}$ $= \frac{\pi}{2} \left\{ \left[0 + \frac{1}{2} \left(\frac{\pi}{2} \right) \right] - \left[0 \right]^{2} \right\}$ $= \frac{m}{2} \left[\frac{m}{4} \right]$ $\mathcal{I} = \frac{\pi^2}{8}$

Example (2)
Finduate
$$\iint_{a \neq 0}^{b} \int_{a}^{c} xyz \, dz \, dy \, dx$$

Soln U
Curren that $\int_{a}^{a} \int_{b}^{b} \int_{a}^{c} xyz \, dz \, dy \, dx$
 $= \int_{a}^{a} \int_{b}^{b} \left[\frac{xyc^{2}}{2} \int_{a}^{c} dy \, dx \right]$
 $= \int_{a}^{a} \int_{b}^{c} \left[\frac{c^{2}xy^{2}}{2} \int_{a}^{b} dx \right]$
 $= \int_{a}^{a} \left[\frac{c^{2}xy^{2}}{4} \int_{a}^{b} dx \right]$
 $= \int_{a}^{a} \left[\frac{c^{2}xy^{2}}{4} \int_{a}^{b} dx \right]$
 $= \int_{a}^{b} \frac{c^{2}}{4} \int_{a}^{a} x \, dx = \int_{a}^{b} \frac{c^{2}}{4} \left[\frac{x^{2}}{2} \int_{a}^{a} dx \right]$
 $= \frac{bc^{2}}{4} \left[\frac{a^{2}}{2} \right]$
 $= \frac{a^{2}bc^{2}}{8}$
 $I = \frac{(abc)^{2}}{8} \int_{a}^{b} \int_{a}^{b} \frac{a^{2}}{4} \int_{a}^{b} \frac{a$

(5)
Chapter -G6 [Volume as a Thible Integral]
Example 0
Find the volume of the sphere
$$x^{*}y^{*}y^{*}z^{*} = a^{*}$$

using the entrypation.
Solve
Volume (V) = 8 × Volume of an actant.
Imult $x = 0 \ t \ x = a$
 $y = 0 \ t \ y = \sqrt{a^{*}x^{*}}$
 $z = 0 \ t \ z = \sqrt{a^{*}-x^{*}y^{*}}$
 $V = 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{*}x^{*}}} \int_{0}^{\sqrt{a^{*}x^{*}y^{*}}} \frac{dy dx}{dz \ dy dx}$
 $= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{*}x^{*}}} \sqrt{a^{*}-x^{*}y^{*}} \ dy dx$
 $= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{*}x^{*}}} \sqrt{a^{*}-x^{*}y^{*}} \ dy dx$
 $= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{*}x^{*}}} \sqrt{(a^{*}-x^{*})^{*}} \ dy dx$
 $= 8 \int_{0}^{a} \left[\frac{a^{*}x^{*}}{2} \sin^{*}\left(\frac{y}{4}\right) + \frac{y}{2} \sqrt{a^{*}-x^{*}-y^{*}} \right]^{\sqrt{a^{*}-x^{*}}} \ dx$
 $= 8 \int_{0}^{a} \left[\frac{a^{*}x^{*}}{2} \sin^{*}\left(\frac{y}{4}\right) + \frac{y}{2} \sqrt{a^{*}-x^{*}-y^{*}}} \right]^{\sqrt{a^{*}-x^{*}}} \ dx$

 $= 8 \int \left[\frac{a^{2} \times x^{2}}{2} \operatorname{Sh}^{-1}(1) - (0) \right] - \left[\cos \beta \right] d\alpha$ $= \$ \int_{1}^{q} \left(\frac{\alpha' - \chi'}{2}\right) \left(\frac{n}{2}\right) d\chi$ $= 2.8\pi \int_{\frac{1}{24}}^{a} (a^{2} - x^{2}) dx$ $= 2\pi \left[\frac{a^{2}x - x^{2}}{3} \right]^{2} = 2\pi \left[\frac{a^{2}}{6} - \frac{a^{2}}{3} \right] - \left[0 \right]$ $= 2\pi \left[a^{2} - a^{2}_{3} \right] = 2\pi \left[\frac{3a^{2} - a^{2}}{3} \right]$ $= 2\pi \left[\frac{2a^3}{3} \right] = \frac{4\pi a^3}{3}$ $V = \frac{4\pi a^3}{3}$ Evaluate SSS xyz dxdydz over the first Escample - 2 $y = x^2 + y^2 + z^2 = a^2$ actent Soln! Criber that first actant of the sphere x +y + z = a? Limeta: to x=a y=0 to y=Ja-x2 z=o to z= Jainty

 $\iiint xyz dxdydz = \iint xyz dzdydx$ $= \int_{a}^{a} \int_{z}^{\sqrt{a^{2}-x^{2}}} \frac{7\sqrt{a^{2}-x^{2}-y^{2}}}{\sqrt{a^{2}-x^{2}-y^{2}}} dy dx$ $= \frac{1}{2} \int \int \frac{\sqrt{a^2 - x^2}}{\sqrt{x^2 - x^2}} \frac{\sqrt{a^2 - x^2 - y^2}}{\sqrt{a^2 - x^2 - y^2}} \frac{\sqrt{a^2 - x^2 - y^2}}{\sqrt{a^2 - x^2 - y^2}}$ = 1/2 Ja Ja-x' xy (Ja-x'-y') dy dx $= \frac{1}{2} \int_{0}^{0} \int_{0}^{\sqrt{a^{2}-x^{2}}} \frac{xy(a^{2}-x^{2}-y^{2})}{a^{2}ya^{2}x}$ $= \frac{1}{2} \int \int \left(a^{2}xy - x^{2}y - xy^{3} \right) dy dx$ $= \frac{1}{2} \int_{0}^{a} \left[\frac{a^{2}xy^{2}}{2} - \frac{x^{2}y^{2}}{2} - \frac{xy^{4}}{4} \right]_{0}^{a^{2}-x^{2}} dx$ $= \frac{1}{2} \int_{0}^{\infty} \left[\frac{a^{2} x (a^{2} - x^{2})}{2} - \frac{x^{2} (a^{2} - x^{2})^{2}}{4} - \frac{x (a^{2} - x^{2})^{4}}{4} \right] dx$ $= \frac{1}{2} \int \frac{a^{2}x(a^{2}-x^{2})}{2} - \frac{2e^{3}(a^{2}-x^{2})}{2} - \frac{2(a^{2}-x^{2})^{2}}{4} dx$ = $\frac{1}{2}\int_{2}^{a} \left[\frac{a^{4}x - a^{2}x^{3}}{2} - \left(\frac{a^{2}x^{3} - x^{5}}{2}\right) - x\left[\frac{a^{4} + x^{4} - 2a^{2}x^{3}}{4}\right]\right] dx$

 $= \frac{1}{2} \int \int \frac{a^{4}x - a^{2}x^{2} - a^{2}x^{2} + x^{5}}{2} - \frac{(a^{4}x + x^{5} - 2a^{2}x^{2})}{2} \int dx$ $= \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[\frac{a^{4}x - 2a^{2}x^{3} + x^{5}}{2} - (a^{4}x + x^{5} - 2a^{2}x^{3}) \right] dx$ = $\frac{1}{2} \int_{2}^{a} \frac{2(a^{4}x - 2a^{5}x^{5} + x^{5}) - (a^{4}x + x^{5} - 2a^{5}x^{2})}{4} dx$ = $\frac{1}{8}\int_{0}^{\alpha} (2a^{4}x - 4a^{2}x^{3} + 2x^{5} - a^{4}x - x^{5} + 2a^{5}x^{3}) dx$ = $Y_8 \int_{0}^{a} (a^{4} x - 2a^{5} x^{2} + x^{5}) dx$ $= \frac{18 \left[\frac{a^{4} \pi^{2}}{2} - \frac{2a^{2} \pi^{9}}{4} + \frac{\pi^{6}}{6} \right]^{2}}{4}$ $= \frac{1}{8} \left[\frac{a^{4}(a^{2})}{2} - \frac{a^{2}(a^{4})}{42} + \frac{a^{6}}{6} \right]$ $= Y_8 \left[\frac{\alpha_{6}}{2} - \frac{\alpha_{6}}{2} + \frac{\alpha_{6}}{6} \right]$ = 1/8 [a/6] $\int V = \frac{a^2}{48}$ Example-3 Evaluate SSJ dxalydz, where v is the finite region of space formed by the planes x=0; y=0; z=0 and 2 + 4 + 2 = 1. Solul. Criver that x=0; y=0; Z=0 and $\frac{2}{a} + \frac{y}{b} + \frac{z}{c} = 1.$

$$fut. [\underline{y=0}]; [\underline{y=0}];$$

68 $= c \int \left(b(1-\frac{3}{a}) - \frac{b^{2}(1-\frac{3}{a})}{a} - \frac{b^{2}(1-\frac{3}{a})^{2}}{2b} \right) dx$ $= c \int \left[b \left(\frac{a-x}{a} \right) - b \left(\frac{a-x}{a} \right) \right] dx$ $= C \int \frac{a}{a} \frac{bx}{a} - \frac{bx}{a} - \frac{a}{a} \frac{bx}{a^2} + \frac{bx^2}{a^2} - \frac{b^2}{2a} \frac{(q-x)^2}{2a} \int dx$ $= c \int_{a}^{a} \left[b - \frac{bx}{a} - \frac{bx}{a} + \frac{bx}{a^{2}} - \frac{b(a-x)^{2}}{2a^{2}} \right] dx$ $= C \int_{0}^{u} \left[b - \frac{2bx}{a} + \frac{bx^{2}}{a^{2}} - \frac{b(a^{2} + x^{2} - 2ax)}{2a^{2}} \right] dx$ $= C \int_{a}^{a} \left[b - \frac{2bx}{a} + \frac{bx^{2}}{a^{2}} - \frac{d^{2}b}{2d^{2}} - \frac{bx^{2}}{2d^{2}} + \frac{2dbx}{2d^{2}} \right] dx$ $= C \int_{a}^{a} \left[b - \frac{2bx}{a} + \frac{bx^{2}}{a^{2}} - \frac{ab}{2} - \frac{bx^{2}}{2a^{2}} + \frac{bx}{a^{2}} \right] dx$ $= c \left[b(p_1) - \frac{2b}{2} \left(\frac{p_1}{2} \right) + \frac{b}{q_2} \left(\frac{p_1^3}{3} \right) - \frac{b}{2} \left(\frac{p_1}{3} \right) - \frac{b}{2q_1^2} \left(\frac{p_1^3}{3} \right) + \frac{b(p_1^2)}{q_2^2} \right]$ $C\left[ba-\frac{ab}{ac}\left(\frac{a^{2}}{a}\right)+\frac{b}{a^{2}}\left(\frac{a^{3}}{3}\right)-\frac{ab}{2}\left(a\right)-\frac{b}{2a^{2}}\left(\frac{a^{2}}{3}\right)+\frac{b}{a^{2}}\left(\frac{a^{2}}{3}\right)\right]$ $C\left[\frac{ab}{ab} - \frac{ab}{3} - \frac{a^{2}b}{2} - \frac{ab}{6} + \frac{a^{2}b}{2}\right]$ $C\left[\frac{ab}{3} - \frac{ab}{6}\right] = C\left[\frac{2ab - ab}{6}\right]$ $= c \left[\frac{\alpha b}{\beta} \right]$ $V = \frac{Obc}{6}$

(3)
Example () Evaluate
$$\iiint dx dy dz$$
, where $\forall xy \neq le$ findt
dragion of space (tablishedrow) bounded by the planes
 $x = 0$; $y = 0$; $z = 0$ and $2\pi + 3y + 4\pi z = 12$.
Solut:
(intro an univer are $x = 0$; $y = 0$; $z = 0$ and
 $2\pi + 3y + 4\pi z = 12$.
(intro an interast form of the plane $2\pi + 3y + 4\pi z = 12$
 $z = 1/2 + \frac{3y}{12} + \frac{4\pi}{12} = \frac{12}{12}$
 $\frac{2}{12} + \frac{4\pi}{12} = \frac{1}{12}$
 $\frac{2}{$

$$\begin{split} \underbrace{\lim_{x \to \infty} \frac{1}{2}}_{y = 0} & z = 3 \\ y = 0 & z = 4 (1 - \frac{7}{3}) \\ z = 0 & z = 6(1 - \frac{9}{4}, -\frac{7}{3}) \\ z = 0 & z = 6(1 - \frac{9}{4}, -\frac{7}{3}) \\ \text{if } dx \, dy \, dz = \int_{0}^{3} \int_{0}^{h(1 - \frac{7}{3})} \int_{0}^{g(1 - \frac{9}{4}h - \frac{7}{3})} dx \, dy \, dz \\ = \int_{0}^{3} \int_{0}^{h(1 - \frac{7}{3})} \int_{0}^{g(1 - \frac{9}{4}h - \frac{7}{3})} dy \, dz \\ = \int_{0}^{3} \int_{0}^{h(1 - \frac{7}{3})} \int_{0}^{h(1 - \frac{7}{3})} dy \, dz \\ = 6 \int_{0}^{3} \int_{0}^{h(1 - \frac{7}{3})} (1 - \frac{9}{4}h - \frac{7}{3}) \, dy \, dz \\ = 6 \int_{0}^{3} \left[\frac{1}{2} - \frac{y_{1}}{8} - \frac{z \cdot y_{1}}{3} \int_{0}^{h(1 - \frac{7}{3})} dz \right] \\ = 6 \int_{0}^{3} \left[h - \frac{1}{3} - \frac{216(1 - \frac{7}{3})^{2}}{8} - \frac{hz(1 - \frac{7}{3})}{3} \right] \, dz \\ = 6 \int_{0}^{3} \left[h - \frac{hz}{3} - \frac{2(3 - 2)^{2}}{9} - \frac{hz(\frac{1 - 2}{3})}{3} \right] \, dz \\ = 6 \int_{0}^{3} \left[h - \frac{hz}{3} - \frac{2(3 - 2)^{2}}{9} - \frac{hz(\frac{1 - 2}{3})}{3} \right] \, dz \end{split}$$

Ø

$$\begin{aligned} &= 6 \int_{0}^{3} \left[h - \frac{hz}{3} - \frac{2(q+z^{2}-6z)}{q} - \frac{12z+hz^{2}}{q} \right] dz \\ &= 6 \int_{0}^{3} \left[h - \frac{hz}{3} - \frac{18+2z^{2}}{q} + \frac{hz}{q} - \frac{4yz}{r} + \frac{hz^{2}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[h - \frac{4z}{3} - \frac{2y}{r} + \frac{hz}{r} - \frac{2z^{2}}{r} + \frac{hz}{r} - \frac{hz}{r} + \frac{hz^{2}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[h - \frac{hz}{3} - 2 - \frac{2z^{2}}{r} + \frac{hz^{2}}{r} - \frac{hz}{r} + \frac{hz^{2}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{3} + \frac{2z^{4}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{3} + \frac{2z^{4}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{2z^{3}}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{hz}{r} + \frac{hz}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{hz}{r} + \frac{hz}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{hz}{r} + \frac{hz}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{r} + \frac{hz}{r} + \frac{hz}{r} \right] dz \\ &= 6 \int_{0}^{3} \left[2 - \frac{hz}{$$

Example (*) Using the truple dutystation, find the volume of
the tetrahedram with vertices (0,0,0), (1,0,0), (0,0,1),
Soluri
Biven that (0,0,0), (1,0,0), (0,1,0), (0,0,1) are public.
through the planus so
$$x+y+z=1$$
.
 $put [\overline{x=0}]; [\overline{y=0}] \text{ Are } 2q_n @$
 $(0 \Rightarrow 0+0+z=1 \Rightarrow)\overline{z=1}$
 $put [\overline{x=0}] \text{ Are } 2q_n @$
 $(0 \Rightarrow 0+0+z=1 \Rightarrow)\overline{z=1}$
 $put [\overline{x=0}] \text{ Are } 2q_n @$
 $(0 \Rightarrow 0+y+z=1)$
 $\Rightarrow [\overline{y=(-z]}]$
 $put [\overline{x=0}] \text{ Are } 2q_n @$
 $(0 \Rightarrow 0+y+z=1)$
 $\Rightarrow [\overline{y=(-z]}]$
 $put [\overline{x=0}] \text{ Are } 2q_n @$
 $(0 \Rightarrow 0+y+z=1)$
 $y=0 \text{ for } y=(-z]$
 $y=0 \text{ for } y=(-z]$
 $y=0 \text{ for } y=(-z)$
 $\int_{0}^{1-2} [1-y-z] \text{ dyd} z$
 $= \int_{0}^{1} \int_{0}^{1-2} [1-y-z] \text{ dyd} z$
 $= \int_{0}^{1} [y-\frac{y}{2} - zy]_{0}^{1-2} \text{ dz}$

()

$$\int_{0}^{1} \left[\left[9 - \frac{y^{\perp}}{2} - zy \right]_{0}^{1-2} dz \right]$$

$$= \int_{0}^{1} \left[\left[(+z) - \left(\frac{(-z)^{2}}{2} - z (1-y) \right] dz \right]$$

$$= \int_{0}^{1} \left[1 - 2 - \frac{(1+z^{\perp}-2z)}{2} - z + z^{\frac{3}{2}} \right] dz$$

$$= \int_{0}^{1} \left[1 - z - \frac{y_{2}}{2} - \frac{z^{\frac{1}{2}}}{2} + \frac{yz}{2x} - z + z^{\frac{3}{2}} \right] dz$$

$$= \int_{0}^{1} \left[1 - z - \frac{y_{2}}{2} - \frac{z^{\frac{1}{2}}}{2} + \frac{y^{2}}{2x} - z + z^{\frac{3}{2}} \right] dz$$

$$= \int_{0}^{1} \left[\frac{y_{2}}{2} - z - \frac{z^{\frac{1}{2}}}{2} + \frac{z^{\frac{3}{2}}}{2} + z^{\frac{3}{2}} \right] dz$$

$$= \left[\frac{y_{2}}{2} - \frac{z^{\frac{1}{2}}}{2} - \frac{z^{\frac{3}{2}}}{2} + \frac{z^{\frac{3}{2}}}{2} \right]$$

$$= \left[\frac{y_{2}}{2} - \frac{y_{2}}{2} - \frac{z^{\frac{1}{2}}}{2} + \frac{z^{\frac{3}{2}}}{2} \right]$$

$$= \left[\frac{y_{2}}{2} - \frac{y_{2}}{2} - \frac{y_{3}}{2} + \frac{z^{\frac{3}{2}}}{2} \right]$$

$$= \left[\frac{y_{2}}{2} - \frac{y_{4}}{2} - \frac{y_{6}}{2} + \frac{y_{3}}{2} \right]$$

$$= \left[\frac{y_{2}}{2} - \frac{y_{2}}{2} - \frac{y_{6}}{2} + \frac{y_{3}}{2} \right]$$

$$= \left[\frac{-1+2}{6} \right] = \frac{y_{6}}{2}$$

$$\left[\sqrt{2} - \frac{y_{6}}{2} \right]$$

Cylindrical and Pactangular Coordinaty are
related by
$$x = r (uso; y = r sinco; z=z.$$

$$\iiint f(x, y, z) dx dy dz = \iiint f(r (uso, rsina, z) rdr dodz$$

Permitted for any forming into cylindrical Coordinate; evaluate
the integral $\iiint (z^2+y^2+z^2) dridy dz taken over the sugron
opace defined by $x^2+y^2 \leq 1$ and $0 \leq z \leq 1$.
Solon:
Here the segron of space is enclosed by the cylindre
 $x^2+y^2=1$ and the planes $z=0$ and $z=1$.
The induces of Sylindric is it.
Putting $x = r (uso) + (rsino) = 1$
 $r^2 (uso + y^2 + 1)$
(1) $x^2 + y^2 = 1 \implies r^2 (uso + r^2 + 1)$
(1) $x^2 + y^2 = 1 \implies r^2 (uso + r^2 + 1)$
 $y^2 (uso + sin^2 + 1) = r^2 (uso + r^2 + 1)$
 $y = r (uso + r^2 + 1)$
(1) $x^2 + y^2 + z^2 = r = r^2 + 1$
 $y^2 (uso + sin^2 + 1) = r^2 + 1$
 $y = r (uso + 1) = r^2 + 1$
 $y = r (uso + 1) = r^2 + 1$
 $y = r^2 + 2^2 + 1$
 $y = r + 2^2 + 1$
(1) $dx dy dz = r dr do dz$$

Limits are 1reo to rel 0=0 to 0=2T Z=0 to Z=1 $\int \int \int (x^2 + y^2 + z^2) dx dy dz = \int \int \int \int (x^2 + z^2) r dr d0 dz$ $= \int \int \frac{dr}{dr} \int (x^3 + z^2 r) dr do dz$ $= \int \int_{-\infty}^{\infty} \left[\frac{x^{\prime}}{4} + z^{\prime} x^{\prime} \right] do dz$ $= \int \int \left[\frac{1}{\Delta} + \frac{z^2(y)}{2} \right] dv dz$ $= \int \int_{-\infty}^{\infty} \left[\frac{1}{4} + \frac{1}{2} \right] du dz$ $= \int \left[\frac{1}{4} \circ + \frac{z^2}{2} \circ \right]^{2\pi} dz$ $= \int \left[\frac{y_{\mu}(an)}{y_{\mu}} + \frac{z^{2}}{y}(an) \right] dz$ $= \int \left[\frac{\pi}{2} + \frac{2\pi}{3} \right] dz$ $= \left[\frac{\eta_0^2 + \pi z^2}{2} \right]_0^2$ $= \left[\frac{\pi}{2} (1) + \frac{\pi}{3} (\frac{1}{3}) \right] = \frac{\pi}{2} + \frac{\pi}{3}$ = <u>30+21</u> 6 = 51

Example O Flatuat
$$\iiint xyz dx dy dz$$
 over the positive
actant of the splace $x^{*} + y^{*} + z^{*} = a^{*}$ by using cylindical
Coordinates.
Solarity by us transform to aybindical Cooldinates
then $x = r(uso; y = r since); z = z;$ and
 $dx dy dz = r dr da dz.$
Now, $x^{*} + y^{*} + z^{*} = a^{*}$
 $\Rightarrow \overline{z} = a^{*} - \overline{z}^{*}$
 $y = 0 \text{ b } r = a$
 $a = 0 \text{ to } a = \pi/z$
 $f(r \cos a)(r \sin a)z r dr du dz$
 $= \int_{0}^{\pi/2} \int_{0}^{\pi/2} \overline{z}^{*} \cos \sin a dr do dz$
 $= \int_{0}^{\pi/2} \int_{0}^{\pi/2} \overline{z}^{*} \cos \sin a dr do dz$
 $= \int_{0}^{\pi/2} \int_{0}^{\pi/2} \overline{z}^{*} \cos \sin a dr do dz$

Ľ

$$= \int_{a}^{M_{L}} \int_{a}^{a} x^{2} G_{N2} g_{NA} g \left[\frac{z_{L}}{z_{L}} \right]_{a}^{\sqrt{d_{L}+1}} dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} x^{3} G_{M3} g_{MA} g \left[\frac{z_{L}}{z_{L}} \right]_{a}^{\sqrt{d_{L}+1}} dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} x^{2} G_{M3} g_{M3} g \left(\frac{a_{L}+1}{z_{L}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} x^{3} G_{M3} g_{M3} g \left(\frac{a_{L}+1}{z_{L}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g_{M3} g \left(\frac{a_{L}+1}{z_{L}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g_{M3} g \left(\frac{a_{L}+1}{z_{L}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{a} G_{M3} g \left(\frac{a_{L}}{z_{S}} - \frac{x_{S}}{z_{S}} \right) dr ds$$

$$= \frac{M_{L}}{2} \int_{a}^{M_{L}} \int_{a}^{M_{L}} \frac{a_{L}}{z_{S}} \int_{a}^{M_{$$

67)

(*)
Spherical coordinates:
Let
$$x = r \sin \phi \cos ; y = r \sin \phi = 0, ; z = r \cos \phi.$$

Hum JJJ $f(x, y, z) d x d y d z.$
· JJJ $f(x, y, z) d x d y d z.$
· JJJ $f(x = y, z) d x d y d z.$
· JJJ $f(x = y, z) d x d y d z.$
· Freenall $(x = y) = \frac{d x d y d z}{x^2 + y^2 + z^2} = d r unghout the volume
if the sphere $x^2 + y^2 + z^2 = a^2$. Drandforming to be spherical coordinates.
Solur:
In spherical polar coordinates systems, we have
 $x = r \sin \phi \cos s y = r \sin \phi \sin s$; $z = r \cos \phi$
 $d x d y d z = r \sin \phi d r d \phi d o.$
Given sher $x^2 + y^2 + z^2 = x^2$.
Himits aller $r = 0$ to $r = a$
 $\theta = 0$ to $\theta = \pi$
JJJ $\frac{d x d y d z}{x^2 + y^2 + z^2} = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \sin \phi d r d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} \sin \phi d \phi d f(x) d \phi d \phi$
 $= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{2} (-\cos \phi) \int_{0}^{2} \int_{0}^{2\pi} - 0 \int_{0}^{2} = a (1+1) 2\pi = 2a(2\pi)$
 $= a (1-c-1)+J [2\pi] = a (1+1) 2\pi = 2a(2\pi)$$

Example
$$-9$$
 Find the volume of the sphere $x^{i}+y^{i}+z^{i}=a^{i}$
by transforming into spherical polar coordinates.
Solon:
In spherical polar Coordinates system, we have
 $x = r sind(coso)$, $y = r sind(sho)$; $z = r cosd(dx dy dz) = r^{2} sind(dx) dd(dd)$
Griven that $r^{i}+y^{i}+z^{i}=r^{2}$
 $\frac{1}{rm(t)}$:
 $r = 0$ to $r = a$
 $\theta = 0$ to $\theta = \pi$
Required values = $\int \int dx dy dz$
 $= \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} r^{2} sind(dr) dd(dd)$
 $= \left[\int_{0}^{1} r^{2} dr\right] \left[\int_{0}^{1} sind(dr) dd(dd)\right]$
 $= \left[\int_{0}^{1} r^{2} dr\right] \left[\int_{0}^{1} sind(dr) dd(dd)\right]$
 $= \left[\frac{r^{3}}{3}\right]_{0}^{2} \left[-cost\right]_{0}^{1} \left[0\right]_{0}^{2r}$
 $= \left[a^{3}_{3}\right] \left[-cost + cost\right] \left[2\pi - 0\right]$
 $= \left[a^{3}_{3}\right] \left[-cost + cost\right] \left[2\pi - 0\right]$
 $= \left[a^{3}_{3}\right] \left[1+i\right] \left[2\pi\right] = \left[a^{3}_{3}\right] (2)(2\pi)$
 $= \frac{4\pi a^{3}}{3} r$

1.77

69)

(70) have a set of a definition of the line of the set of the to - The total - of the En TIPANII Identi-adam sig = Last (m) (sig -

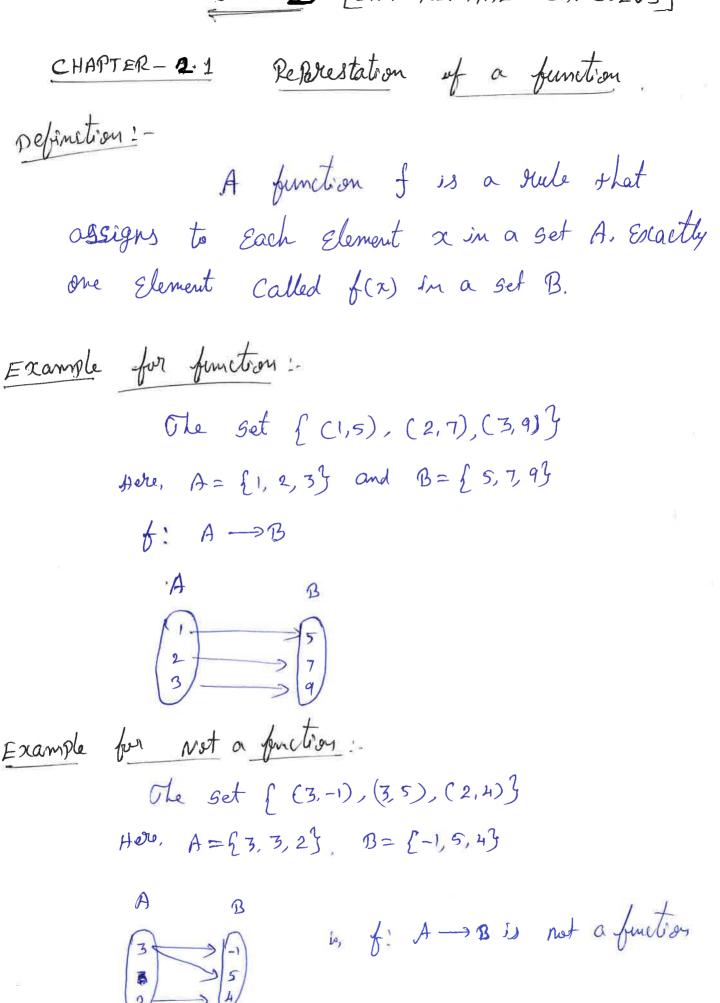
MA3151-MATRICES AND CALCULUS

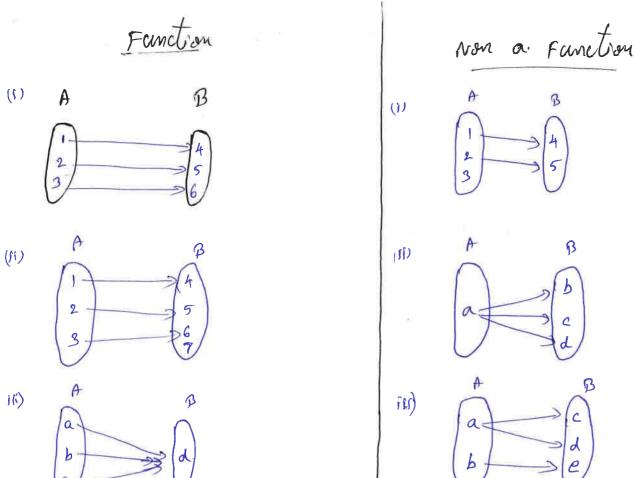
<u>UNIT-2</u>

DIFFERENTIAL CALCULUS

Mr.V.PRAKASH,M.Sc;M.Phil;B.Ed; Assistant Professor Department of Mathematics

O





TYPES OF FUNCTION :onto function り If $f: A \rightarrow B$, f(A) = B (or) Range = domain Eg: P f 35 $f(A) = \{5, 6\}$ 2 3 $B = \{5, 6\}$ ··· f (A) = B is onto function Pre-image

 $f(A) \neq B is not onto function$ one to one function: 2) If $a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$, $a_1a_2 \in A$ then $f(a_1) = f(a_2) \implies q_1 = q_2$. $\begin{pmatrix} 1 \\ 2 \\ 3 \\ \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ Involve function 2. 3) If f: A -> B and f': B -> A $\begin{array}{c} A \\ 2 \\ 2 \\ 3 \\ \end{array} \begin{array}{c} B \\ b \\ c \\ \end{array} \begin{array}{c} B \\ b \\ c \\ \end{array} \begin{array}{c} B \\ b \\ c \\ \end{array} \begin{array}{c} B \\ c \\ \end{array} \end{array}$ Constant function: -A) 2 2 3 5 5 Compostron function:- $\textcircled{\basis}$ f: A -> B and g: B -> c, then gof: A -> c $a^{A} + (a)^{B} = g(b(a))$

Ð

Solut (b) let
$$g(v) = x^{2}$$

 $i_{y} y = x^{2}$
 $i_{x} = 0 \Rightarrow y = 1$
 $x = 2 \Rightarrow y = 4$
 $x = -3 \Rightarrow y = 9$
 $x = -3 \Rightarrow y = 9$
 $x = -3 \Rightarrow y = 9$
 $(-1, 1), (-2, 4), (-3, 9)$
 $x = -2 \Rightarrow y = 4$
 $(-1, 1), (-2, 4), (-3, 9)$
 $x = -2 \Rightarrow y = 4$
 $(-1, 1), (-2, 4), (-3, 9)$
 $x = -3 \Rightarrow y = 9$
 $(-1, 1), (-2, 4), (-3, 9)$
 $x = -3 \Rightarrow y = 9$
 $(-1, 1), (-2, 4), (-3, 9)$
 $x = -3 \Rightarrow y = 9$
 $(-1, 1), (-2, 4), (-3, 9)$
 $x = -3 \Rightarrow y = 9$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-1, 1), (-2, 4), (-3, 9)$
 $(-2, -1), (-3, 9)$
 $(-2, -1), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 9)$
 $(-3, 2), (-3, 2)$
 $(-3, 2), (-3, 2)$
 $(-3, 2), (-3, 2), (-3, 2)$
 $(-3, 2), (-3, 2), (-3, 2)$

EVEN FUNCTION 1-

If a function f satisfies
$$f(-x) = f(x)$$
 for
Every number x in its domain, then f is called an
Ever function.
EST: $f(x) = x^2$ is an even function
 $f(-x) = (-x)^2 = x^2 = f(x)$
OSD FUNCTION:-
If a function f satisfies $f(-x) = -f(x)$ for
Every number x in its domain, then f is called an
odd function.
EST: $f(x) = x^2$ is an odd function
 $f(-x) = (-x)^3 = -x^3 = -f(x)$.
Increasing and pecreasing function:-
A function f is called increasing on an
interval I, it $f(x_1) > f(x_2)$, whenever $x_1 < x_2$ in I.

Eq. Θ Find the domain of the functions $f(0) = \frac{2C+4}{2c^2-q}$.
Bolni- Girben that $f(x) = \frac{x+4}{x^2-9}$
$pat, x^2-9=0 \implies x^2=9$ $x=\pm 3$
$If x=3 \implies f(y) = \frac{35+4}{q-q} = \frac{7}{2} = 0$
$x = -3 \implies f(y) = -\frac{3+4}{9-9} = \frac{1}{3} = \infty$
The domain of f is $\left(x \neq 3, x \neq -3\right)$ which is written as $\left((-\infty, -3), v(-3, 3), v(-3, -3)\right)$
Eg:-62 Find the domain and range up functions $y = \sqrt{1-x^2}$
$\frac{5010^{1}}{1000} \text{Gaiven } g = \sqrt{1-x^2}$
Simle, square root of a negative number is not defined
$ -x^{2} \ge 0 \implies \ge x^{2}$ $\implies x^{2} \le = x^{2} \le = x^{2} \le $
bence domain of f is [-1, 1]
$If \chi = -1 \implies y = 0$
$f x = 1 \implies y = 0$
If x=0 =) y=1
pence the trange of y is 20, 17

$$Sg^{-(9)}$$
Find the domain of the function $f(x) = \frac{2x^{2}-5}{x^{2}+x^{2}-6}$
Solve: Given that $f(x) = \frac{2x^{3}-5}{x^{2}+x-6}$
 $f(0) = \frac{2x^{3}-5}{(x-2)(x+3)}$
G. Le function is analytimed at $(x-2)(x+3) = 0$
 $x-2=0$ $[x+3=0$
 $[x=-3]$
 \therefore G. Le domain of f is $[x/x \pm 2, x \pm -3]$
Work is publicles as $(-\infty, -3) V(-3, 2) V(2, \infty)$.
Eq. $(-\infty, -3) V(-3, 2) U(2, \infty)$.
Eq. $(-\infty, -3) V(-3, 2) V(2, \infty)$.
Eq. $(-\infty, -3) V(-3, 2) V(2, \infty)$.
Eq.

CHAPTER-2.2 Limit of a function suppose far is defined when x is near the Deput number a, then the limit of that functions is $\lim_{x \to a} f(x) = L.$ ie, for -> 1 as x -> 9. Left - hand Limit ! -

$$\lim_{x \to a} f(x) = L.$$

$$\frac{Right - hand \ Lim fax}{2 - 2a^{2}} = 2.$$

Note!
$$\lim_{x \to a} f(x) = L \implies \lim_{x \to a} f(x) = L = \lim_{x \to a} f(x)$$

Lim g(x) x-ra

$G \lim_{x \to a} c = c$			*
6 $\lim_{x \to a} x = a$			
	N.		
(a) $\lim_{x \to a} [f(x)]^n =$	[Lim for]		
9 Jim AJoc -	= nsa,	nus tre	
Eg-0 Find	the value	of lim 2 2 >1 x	2-1
	$y = \frac{x-1}{x^2-1}$		
This func	tion is not defi	ned at $x=1$.	
$x \neq 1$	6()	x>1	fer
0.5	0.666 7	1.5	0.4
0.9	0.5263	(*	0.4762
0.99	0.5025	1.01	0.4975
0.999	0.5002	(.00)	D.H998
0.9999	0.5	(. 000)	0.5

 $\frac{1}{2} \lim_{x \to 1} \frac{2c-1}{2c^2-1} = 0.5$

~	6
29	-0
V	

Soln-

Find	the value of Lim E-20	56279
Let	$f(t) = \frac{\sqrt{t^2 + 9} - 3}{t^2}$	te
t	6(6)	
± 0.5	0.1655	
± 0.1	0.1666	
± 0.05	0.1667	
± 0.01	0.1667	
±0.001	0-1667	
±0.0001	0.1667	

(1)

-3

0.167 + 0.00001

 $\lim_{E \to 0} \sqrt{E^2 + q} = 3 = 0.167$

50 M1.

Find the value of him 1/2 if it Exits.

 $let f(0) = \frac{1}{2}c^2$

.fas X 1 1 ±0.5 25 ±0.2 ±0.1 100 10.01 10,000

 $\lim_{x \to 0} \frac{1}{2c^2} = 0$

Eg. B Find the value of	$\lim_{x \to 3^+} \frac{2x}{2c-3} \text{ and }$	Lim 2x x-33 x-3
Soln' Lim <u>220</u> Griven <u>x-33</u> 2c-3 and	$L_{1}M = \frac{2x}{x-3}$	
x $f(x)$	X	bas
2.9 -58	3.01	602
2-99 -598	3.001	60002
2-999 - 5998	3.000001	6000002
2-9999 - 5999998	3-00000001	600000002
from the above takes $ \begin{array}{rcl} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $		
<u>Solni</u> Lim (2x ² -3x+4) Civen, x-75		
-	$= 2(5)^2 - 3(5) + 4$	
	= 2(25) - 15 + 4	
5	= 50-15+4	
	= 39.	

Ð

Eg. (1) Find the balance of
$$\lim_{x \to -2} \frac{x^3 + 2x^{5-1}}{5 - 3x}$$
.
Solur:
Given $\lim_{x \to -2} \frac{3x^3 + 2x^{5-1}}{5 - 3x}$

$$= \frac{\lim_{x \to -2} (x^3 + 2x^{5-1})}{\lim_{x \to -2} (5 - 3x)}$$

$$= \frac{(-2)^3 + 2(-2)^{5-1}}{5 - 3(-2)} = \frac{-8 + 2(4) - 1}{5 + 6} = \frac{-8 + 8 - 1}{19}$$

$$= -\frac{1}{19}$$
Eg. (2) Show that $\lim_{x \to 0} |x| = 0$.
Solur Given that $\lim_{x \to 0} |x| = 0$.
Solur Given that $\lim_{x \to 0} |x| = 0$.
Solur $\lim_{x \to 0} |x| = \lim_{x \to 0} x = 0$
 $x \to 0^{5}$
 $\lim_{x \to 0^{5}} |x| = \lim_{x \to 0^{5}} x = 0$
 $\lim_{x \to 0^{5}} |x| = \lim_{x \to 0^{5}} |x| = 0$
 $\lim_{x \to 0^{5}} |x| = \lim_{x \to 0^{5}} |x| = 0$
 $\lim_{x \to 0^{5}} |x| = \lim_{x \to 0^{5}} |x| = 0$
 $\lim_{x \to 0^{5}} |x| = \lim_{x \to 0^{5}} |x| = 0$
 $\lim_{x \to 0^{5}} |x| = \lim_{x \to 0^{5}} |x| = 0$

$$\frac{\epsilon g \cdot \omega}{solut} = \frac{\rho_{show}}{r} \frac{\rho_{show}}{r}$$

Eq.(2) Evaluate
$$\lim_{X \to B/2} \frac{1+\ln 2x}{(\pi - 2x)^{2}}$$

Solur:
 $\lim_{X \to B/2} \frac{1+\ln 2x}{(\pi - 2x)^{2}} = \lim_{X \to B/2} \frac{2(\omega \frac{1}{2})}{(\pi - 2x)^{2}}$
 $= \lim_{X \to B/2} \frac{2 \sin^{2} (B/2 - x)}{(\pi - 2x)^{2}}$
 $= \lim_{X \to B/2} \frac{1}{2} \left[\frac{5\ln (2i - B/2)}{(B/2 - x)} \right]^{2}$
 $\lim_{X \to B/2} \frac{1}{2} \left[\frac{5\ln (2i - B/2)}{(B/2 - x)} \right]^{2}$
 $\lim_{X \to B/2} \frac{1}{2} \left[\frac{5\ln 0}{(B/2 - x)} \right]^{2}$
 $\lim_{X \to B/2} \frac{1}{2} \left[\frac{5\ln 0}{(B/2 - x)} \right]^{2}$
 $\lim_{X \to B/2} \frac{1}{2} \left[\frac{5\ln 0}{(B/2 - x)} \right]^{2}$

.

CONTINUITY :-

Ť

Seture A function of is continuous at a number
'a' if
$$\lim_{x \to a} b(x) = f(a)$$
.
Gle above definition implicity requires there points,
(1) 'f(a) is defined
(11) 'Implient (12) Implies f(x) = f(a).
Eg-O Where are Each of the following function
discontinuous? (a) $f(x) = \frac{x^{*} - x - 2}{x - 2}$ (b) $f(x) = \int_{1}^{1} \frac{x}{x} \neq 0$
(c) $f(x) = \begin{cases} \frac{x - x - 2}{x - 2}, x \neq 2\\ 1, x = 2 \end{cases}$
(a) Given $f(x) = \frac{2c^{*} - x - 2}{x - 2}$
Put $2(-2 = 0 \implies x = 2$
 \therefore Here f is discontinuous at $x = 2$
(b) Given $f(x) = \int_{1}^{1} \frac{x}{x} + 0$
 $1, x = 0$
Here f is discontinuous at $x = 2$
 $1, x = 0$
Here, $f(0) = 1$, but $\lim_{x \to 0} \frac{1}{x^{2}}$ not saist
 $50, f$ is discontinuous at $x = 0$

O

(c) Griven $f(x) = \int \frac{x^2 - x - 2}{x - 2}, x \neq 2$ (1) $x = 2$	3
Here, f(2) =1 is defined and	
$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^{2} - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)}$	
$= \lim_{x \to 2} (x+1)$	
= 2+1	
= 3 $= f(2)$	
50, f is continuous at '2'	
Eg- (2) Show that the femations $f(x) = 1 - \sqrt{1 - x^2}$ is Continuous	
in the interval [-1, j].	
Solu: Compider Lim $f(x) = \lim_{x \to a} \left[1 - \sqrt{1 - x^2} \right]$ if $-1 \le a \le 1$	
= 1 - V long (1-22)	
$= 1 - \sqrt{1-a^2}$	
$=f(\alpha)$	
. I is continuous at a if -12a21	
Also $\lim_{x \to -1^+} f(x) = 1 = f(-1)$	
$\lim_{x \to 0^{-1}} f(x) = 1 = f(1)$	
f is continuous from the right at -1 and	
left at 1 fis continuous on [-1, 1]	

Example-C3 Find
$$Lt = \frac{x^3 + 2x^2 - 1}{x - 2}$$

Solution Let us consider the function $f(x) = \frac{x^3 + 2x^{5-1}}{5^{5-3\chi}}$ is retronal. By known theorem if is continuous on its domain. Which is $f(x)/x \neq 5/3$? 19)

$$\frac{1}{2 + 2} \frac{2(2 + 2)(2 - 1)}{5 - 32} = \lim_{x \to -2} \int_{x \to -2}^{2} \int_{x \to -2}^{$$

Example-OP Ghow that the function is continuous at the number a, by using definitions of continuity and properties of limits. $f(x) = (x+2x^2)^4$, a = -1.

Solu:
Given that
$$f(x) = (2(+2x^3))^4$$
, $\alpha = -1$
 $W \cdot |_{c-T}$ if $f(x) = if (2(+2x^3))^4$
 $= \begin{bmatrix} if (2(+2x^3))^4 \\ x - 3 - 1 \end{bmatrix}^4$
 $= \begin{bmatrix} -1 + 2(-1)^3 \end{bmatrix}^4 = [-1 + 2(-1)]^4$
 $= (-1 - 2)^4 = (-3)^4$
 $= 81_{W}$

Example:
$$\[Gamma]$$
 For clast value of the constant C as the function of
Continuums on $(-\infty, \infty)$. $f(x) = \int_{x^{2}-cx}^{cx^{2}+2x}, x \ge 2$
Given that $f(x) = \int_{x^{2}-cx}^{cx^{2}+2x}, x \ge 2$
(iven that $f(x) = \int_{x^{2}-cx}^{cx^{2}+2x}, x \ge 2$
 $x \ge 1$
 $x \ge 2$
 $x \ge 1$
 $x \ge 2$
 $x \ge 2$

$$\lim_{X \to a} f(0) = \lim_{X \to 2} [3x^{4} - 5x + 3x^{4} + 1]$$

$$= 3\lim_{X \to 2} x^{4} - 5\lim_{X \to 2} x + \lim_{X \to 2} 3x^{4} + 4$$

$$= 3(2)^{4} - 5(2) + 3(2)^{4} + 4$$

$$= 3(4) - 10 + 2\sqrt{444}$$

$$= 48 - 10 + 2\sqrt{444}$$

$$= 48 - 10 + 2\sqrt{4}$$

$$f(z) = 40$$
By the definition of continuity, f is continuous at a=2.
Example 0
(1) Find $\lim_{X \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$

$$= \frac{5 + \sqrt{4}}{\sqrt{5 + x}} = \frac{5 + 2}{\sqrt{3}} = \frac{7}{3} \iint$$
(i) Find $\lim_{X \to 4} e^{x^{2} - x}$

$$= e^{(y)^{2} - 1} = e^{(1)} = e^{0}$$

$$= 1 \iint$$

21)

Example (a) Discuss the continuity of
$$f(x) = f(x) = f(x) x$$
.
Solur
(non that $f(x) = tanx$.
In $f(x) = \frac{g(x)}{(cosx)}$ is continuous except (as $x = 0$.
This happens when x is odd integer multiple of $T/2$.
So $y = tan x$ has infinite discontinuity.
When $x = \pm \pi/2$, $\pm 3\pi/2$, $\pm 5\pi/2$, \dots and so on.
If $f(x) = tan x$.
Example (a) $f(x) = tan x$.
Example (b) $f(x) = tan x$.
Example (c) $f(x) = tan x$.
Soluri $f(x) = tan x$.
Example (c) $f(x) = tan x$.
Example (c) $f(x) = tan x$.
Soluri $f(x) = tan x$.
Example (c) $f(x) = tan x$.
Soluri $f(x) = tan x$.
S

4.2

The derivative of a functions f at a number 'a', denoted by f'(a) is $f'(a) = \frac{f(a+h) - f(a)}{h}$ if this limit exists.

If we write x = arth, then we take<math>h = x - a and h approaches o: iff x approaches a: $\therefore f'(a) = \lim_{x \to a} \left[\frac{b(y) - f(a)}{x - a} \right].$

Example-O Find the Equation of the tangent line to the Parabola $y = x^2$ at the point P(1,1).

Solution Here we have a = 1 and $f(x) = x^2$. So the slope is $m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ $= \lim_{x \to 1} \frac{f(x) - f(x)}{x - 1} = \lim_{x \to 1} \frac{x^2 - 1}{x - 1}$ $= \lim_{x \to 1} \frac{(x - 1)(x - 1)}{(x - 1)}$ $= \lim_{x \to 1} \frac{(x - 1)(x - 1)}{(x - 1)}$ $= \lim_{x \to 1} (2(1)) = 1 + 1 = 2.$

> W-K-T Eqn of tangent line at (x_1, y_1) is $(y-y_1) = m(x-x_1)$, Here $(x_1, y_1) = (1,1)$ (y-1) = 2(x-1) y-1 = 2x-2 y = 2x-2+1y = 2x-2+1

23)

Example
$$\stackrel{(1)}{\longrightarrow}$$
 Find the Equation of the tangent line to the
hyperbole $y = \frac{1}{2}x$ at the point $(3,1)$.

Solution the slope of the point at $(3,1)$ is
 $M = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$, Hole $a=3$
 $= \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$
 $= \lim_{h \to 0} \frac{3+h}{h} = \lim_{h \to 0} \frac{(3-(3+h))}{h}$
 $= \lim_{h \to 0} \frac{(3+a-h)}{h} = \lim_{h \to 0} \frac{-K}{K(3+h)}$
 $= \lim_{h \to 0} \frac{-1}{3+h} = -\frac{1}{3+0} = -\frac{1}{3}$
($M = -\frac{1}{3}$)
 $= \lim_{h \to 0} \frac{-1}{3+h} = -\frac{1}{3+0} = -\frac{1}{3}$
($M = -\frac{1}{3}$)
($M = -\frac{1}{3}$)
 $(M = -\frac{1}{3}) = -\frac{1}{3+0} = -\frac{1}{3}$
($M = -\frac{1}{3}$)
 $M = -\frac{1}{3} = -\frac{1}{3}$
($M = -\frac{1}{3} = -\frac{1}{3}$)
 $M = -\frac{1}{3} = -\frac{1}{3}$
($M = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3}$)
 $M = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3}$
($M = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3}$)
 $M = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3}$
($M = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3} = -\frac{1}{3}$)
 $M = -\frac{1}{3} = -\frac{1}$

ł

D

Example - (3)
Find the tangent line to the Equation
$$x^3+y^3=6xy$$
 at
the point (3,3) and at what point the tangent line horizontal
in the first anadronet.
Silve:
(From that $x^3+y^3=6xy$
To find (3lope) $\mathbf{m} = dt/dx$
i. $x^3+y^3=6xy$
 $df_{11}(x^3+y^3) = d/dx$ (6xy)
 $3x^2+3y^3dy/dx = 6x dt/dx + 6y$
 $3y^3dt/dx - 6x dt/dx = 6y - 3x^4$
 $dt/dx = \frac{3(2y-x^4)}{3y^2-6x}$
 $dt/dx = \frac{3(2y-x^4)}{3y^2-6x}$
 $gluge = \mathbf{m} = dt/dx = \frac{y(2y-x^4)}{y(y-2x)} = \frac{2y-x^4}{y^2-9x}$
 $\left(\frac{dy}{dx}\right) = \frac{2(3)\cdot(3)^4}{(3,3)} = \frac{2(3)\cdot(3)^4}{(3)^4-2(3)} = \frac{6-9}{9-6} = -\frac{3t}{3t}$
 $\mathbf{m} = -1$
Ote Equation of the tangent at the point (3,3) as
 $(y-3) = -1(\pi-3)$
 $y-3 = -x+3$
 $y+x = 3+3$
 $[7(+y=6]$

The tangent line is [21+4=6]

b, y = b - xTo find horizontal tangent 1-The curve y = 6 - x. $\frac{dy}{dx} = 0 \implies 0 - 1 = 0 \implies 0$. The curve y = 6-x has invited langent at x = Example - (4) Does the curve y=x4-2x+2 have any horizontal tangents? If So Where? 50/n!" Griber y = x4-2x+2. To find horizontal tangent :sf any occur where dy/a = s. To find these points. is, y=x4-2x+2 $\frac{dy_{12}}{dx} = 4x^2 - 4x.$ \Rightarrow $4x^2 - 4x = 0$ $Ax(x^2-1) = 0 \implies 4x = 0 \text{ and } x^2-1 = 0$ [x=0] and x²=1 =) p(=±1] The horizontal tangents at x=0, 1, -1.

Example - S

$$xf \quad f(x) = \frac{1-x}{2+x} \quad \text{then, find the Equation for f(x)}$$

$$whing the Concept of derivatives.$$
Solve that
$$f(x) = \frac{1-x}{2+x}.$$

$$(L \times T \quad f'(x)) = \frac{Lt}{h \to 0} \quad \frac{f(x+h) - f(x)}{h}$$

$$= \frac{Lt}{h \to 0} \left[\frac{(1-x-h)}{2+x(h+h)} - \frac{(1-x)}{2+x} \right]$$

$$= \frac{Lt}{h \to 0} \left[\frac{(2+x)(1-x-h) - (1-x)(2+x+h)}{h} \right]$$

$$= \frac{Lt}{h \to 0} \left[\frac{(2+x)(1-x-h) - (1-x)(2+x+h)}{h} \right]$$

$$= \frac{Lt}{h \to 0} \left[\frac{(2-2x-2h+xx-x^2-hx) - (2+x+h)}{h(2+x)(2+x+h)} \right]$$

$$= \frac{Lt}{h \to 0} \left[\frac{2'-x - xt - 2h - bx' - 2' - xt - h + 2x + x' + bx'}{h(2+x)(2+x+h)} \right]$$

$$= \frac{Lt}{h \to 0} \left[\frac{-3k'}{h(2+x)(2+x+h)} \right]$$

$$= \frac{14}{h \to 0} \left[\frac{-3}{(2+x)(2+x+h)} \right]$$

$$= \frac{-3}{(2+x)(2+x+h)} = \frac{-3}{(2+x)(2+x)}$$

$$f'(x) = \frac{-3}{(2+x)^2}.$$

Example = (e) If $f(x) = x^3 - x$, then find the Equ $f'(x)$.
Using the properties.
Solution Grow that $f(x) = x^3 - x$.
W-k-T $f'(x) = \frac{1+}{h \to 0} \frac{f'(x+h) - f(x)}{h}$

$$= \frac{1+}{h \to 0} \left[\frac{(x^2+3x^2h+3xh^2+h^2) - (x+h) - x^2+x^2}{h} \right]$$

$$= \frac{1+}{h \to 0} \left[\frac{x^2+3x^2h+3xh^2+h^2 - (x+h) - x^2+x^2}{h} \right]$$

$$= \frac{1+}{h \to 0} \left[\frac{3x^2h+3xh^2+h^2 - h - x^2+x^2}{h} \right]$$

$$= \frac{1+}{h \to 0} \left[\frac{3x^2h+3xh^2+h^2 - h - h}{h} \right]$$

$$= \frac{1+}{h \to 0} \left[\frac{3x^2h+3xh^2h+h^2 - 1}{h} \right]$$

$$= \frac{1+}{h \to 0} \left[\frac{3x^2+3xh^2h+3xh^2 + h^2 - h}{h} \right]$$

Framelle D petermine Whether floor saists on not. for the
given function
$$f(x) = \begin{cases} x \sin(1/x), x \neq 0 \\ 0, x \neq 0 \end{cases}$$

Since, $f(x) = x \sin(1/x), x \neq 0$
and $f(x) = 0$, when $x = 0$
We have $f'(x) = \frac{1}{h} + \frac{f(x+h) - f(x)}{h}$
 $f'(x) = \frac{1}{h-30} + \frac{f(x+h) - f(x)}{h}$
 $= \frac{1}{h-30} + \frac{f(x) - f(x)}{h}$
 $= \frac{1}{h-30} - \frac{h \sin(1/h) - 0}{h}$
 $= \frac{1}{h-30} - \frac{h \sin(1/h) - 0}{h}$
 $f'(x) = \frac{1}{h-30} - \frac{h \sin(1/h)}{h}$
 $f'(x) = \frac{h}{h-30} - \frac{h \sin(1/h)}{h}$

-: f'(0) does not Soust.

Example: -(8)
If
$$f(x) = 2x^3 + x$$
 then find the squ for $f(a)$.
Wing the Properties.
Solur: Griven that $f(x) = 2x^3 + x$.
W-K-T $f(x) = \frac{1t}{h-30} \frac{f(x+h) - f(x)}{h}$
 $= \frac{1t}{h-30} \int \frac{2(x+h)^3 + (x+h) - (2x^3 + x)}{h}$
 $= \frac{1t}{h-30} \int \frac{2(x^3 + 3x^5 h + 3xh^5 + h^5) + x^2 + h - 2x^5 - x}{h}$
 $= \frac{1t}{h-30} \int \frac{2x^5 + 6x^5 h + 3xh^5 + 2h^5 + h}{h}$
 $= \frac{1t}{h-30} \int \frac{6x^5 h + 6xh^5 + 2h^5 + h}{h}$
 $= \frac{1t}{h-30} \int \frac{6x^5 h + 6xh^5 + 2h^5 + h}{h}$
 $= \frac{1t}{h-30} \int \frac{1}{h} \frac{6x^5 h + 6xh^5 + 2h^5 + h}{h}$
 $= \frac{1t}{h-30} \int \frac{1}{h} \frac{6x^5 h + 6xh + 2h^5 + h}{h}$
 $= \frac{1t}{h-30} \int \frac{1}{h} \frac{6x^5 h + 6xh + 2h^5 + h}{h}$
 $= \frac{1}{h-30} \int \frac{1}{h} \frac{6x^5 h + 6xh + 2h^5 + h}{h}$
 $= \frac{1}{h-30} \int \frac{1}{h} \frac{1}{$

$$\frac{59-10}{59-10} \quad Tb \quad y = (x^{3}-1)^{100}, \text{ find } dy_{dx} = 2$$

$$\frac{59}{30} \text{ (aven } y = (x^{2}-1)^{100}$$

$$\frac{dy}{dx} = 100 (x^{2}-1)^{94} (3x^{2})$$

$$\frac{dy}{dx} = 300x^{2} (x^{2}-1)^{94}$$

$$\frac{59-10}{4x} \quad Tb \quad x^{2} + y^{2} = 25, \text{ find } \text{ find } \frac{dy_{dx}}{dy_{dx}}$$

$$\frac{59}{4x} \quad (x^{2} + y^{2}) = 25, \text{ find } \text{ find } \frac{dy_{dx}}{dy_{dx}}$$

$$\frac{59}{4x} \quad (x^{2} + y^{2}) = 25, \text{ find } \frac{find}{dy_{dx}} \frac{dy_{dx}}{dy_{dx}}$$

$$\frac{59}{4x} \quad (x^{2} + y^{2}) = 4 \text{ find } \frac{dy_{dx}}{dy_{dx}} = 0$$

$$2y \quad dy_{dx} = -2x$$

$$dy_{dx} = -\frac{bx}{xy}$$

$$dy_{dx} = -\frac{bx}{xy}$$

$$dy_{dx} = -\frac{bx}{xy}$$

$$dy_{dx} = -\frac{2}{xy}$$

$$dy_{dx} = -\frac{2}{x}$$

D

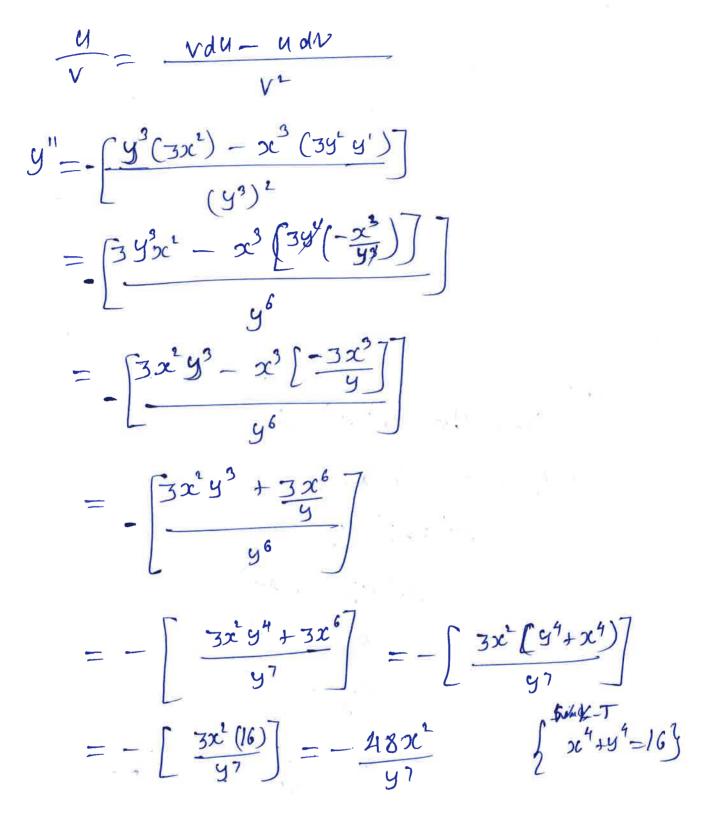
ý.

Eg = E Show that the sum of x and y - intercepts of any tangent lime to the curve VI+VY = IC is Equal to C.

Some

Criven Joc + Jy = TC Diff. w. r-to 'se' on both Bides $\frac{1}{2\sqrt{3}c} + \frac{1}{2\sqrt{\alpha}} \frac{dy}{dx} = 0$ $\frac{1}{2\sqrt{u}} dy_{en} = -\frac{1}{2\sqrt{x}}$ dy/ax = -1 . \$59 dy/dr = - Vy Let (a,b) be a point on the Curve Slope $m = dy_{ax}(a,b) = -\sqrt{b}_{va} = -\sqrt{b}_{a}$ Equ of the tangent is $(y-y_1) = m(x-x_1)$ $(y-b) = -\int b/a (x-a)$ $\frac{a_{-b}}{a_{-a}} = -\sqrt{b/a}$ $(a (y-b) = -\sqrt{b}(x-a)$ $y \sqrt{a} - b \sqrt{a} = -x \sqrt{b} + a \sqrt{b}$ $x \sqrt{b} + y \sqrt{a} = a \sqrt{b} + b \sqrt{a}$ $\frac{x\sqrt{b}}{a\sqrt{b}+b\sqrt{a}} + \frac{y\sqrt{a}}{a\sqrt{b}+b\sqrt{a}} = 1$ $\frac{x}{a+\sqrt{ab}} + \frac{y}{b+\sqrt{ab}} =)$

here, a - interast is a + Jab and y - interrest is b+ Jab . Sam of the Intercepts is a + Jab + b + Jab = a + b + 2 Jab $=((a+b)^2$ $= (c)^{2} \qquad (i) \qquad (a,b) \qquad powt on$ $= c_{\mu} \qquad \qquad \forall \mathcal{R} \neq \mathcal{C} = \mathcal{C}$ Find the first two. derivatives for 20449=16. Eg-5 $\frac{50|n'}{\text{Griven that}} x^{4} + y^{4} = 16 \longrightarrow 0$ niff O. W. r. to. x. $4x^3 + 4y^3 dy_{1x} = 0$ Hy dy/dn = - Kx $y^3 dy/dx = -x^3$ $dy_{dx} = -\frac{x}{y^3}$ $\begin{bmatrix} y' = -\frac{x^3}{y^3} \end{bmatrix} \longrightarrow \textcircled{D}$ Again Diff @. W. Ito. X. L'W. 10-T Volu- udv Z Here, $u = x^3 | V = y^3$ $du = 3x^2 | dv = 3y^2 dy/dx$. $dv = 3y^2y'$



 $y'' = -\frac{48x^2}{y^7} //$

$eg = 0$ If $f(n) = xe^{2}$, find $f(n)$.	(B)
30/n2. Given $f(x) = x e^x$	
$f(x) = d/dx [x e^{x}]$	
$= x e^{\chi} + e^{\chi} (\eta)$ $= x e^{\chi} + e^{\chi}$	
$= e^{\chi} [\chi + \eta]$	
$Eg - G$ If $f(x) = \frac{x^2 + x - 2}{x^3 + 6}$, find $f(x)$.	Ŀ
$\frac{50 n'-}{50 n'-} Griber f(x) = \frac{\pi^2 + x - 2}{\pi^3 + 6}$	
$W = \frac{V du - u dV}{V^2}$	
$f'(x) = \frac{(x^{2}+6) d(dx)(x^{2}+x-2) - (x^{2}+x-2) d(dx)(x^{3}+6)}{(x^{3}+6)^{2}}$	
$= \frac{(2c^{3}+6)(2x+1) - (c^{2}+x-2)(3x^{2})}{(2c^{3}+6)^{2}}$	
$= 2x^{4} + x^{3} + 12x + 6 - 3x^{4} - 3x^{3} + 6x^{2}$	
$(x^{3}+6)^{2}$	
$= -\frac{x^4 - 2x^3 + 6x^2 + 12x + 6}{(x^3 + 6)^2},$	

Chain Rule:-
$\mathcal{E}_{g} = 0$ If $Y = \operatorname{Sim}(x^{2})$, find $\frac{dy}{dx}$?
$50/m^2$: Griven $y = 5im(2c^2)$
$\frac{dY}{dx} = GS(x^2) \cdot (2x)$
$\frac{dY}{dn} = 2\chi \cos(n^2)$
Eg - (2) If $g = Gus(3)(7+4)$, find $dy_{17} = ?$
50 Int^{-} Gaven $Y = 605(3x^{2}+4)$
$dy_{dn} = Sim(3x^2 + 4)(Gx)$
$dy_{dhl} = 6x \sin(3x^2 + 4).$
$Eg - G$ If $y = (Sin 2C)^2$, find dy_{div}
Solw Green y = (Simix)
$dY_{dx} = 2 \sin x \cdot \cos x$
Result: If it is differentiable at a, then is Continuous at a.
Proved: Griven f as differentiable at a' That as $f(a) = \lim_{x \to a} \frac{f(a) - f(a)}{x - a}$ suists

TO Probe of its Continuous at a' $\lim_{x \to a} f(x) = f(a)$ Conjider, $f(y) - f(q) = \frac{f(x) - f(q)}{x - q} (x - q)$ $\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \quad \lim_{x \to a} (x - a)$ = f(a).(o)= 0 $\lim_{\alpha \to a} f(\alpha) = \lim_{\alpha \to a} \sum_{\alpha \to$ $= \lim_{x \to a} f(a) + \lim_{x \to a} f(a) - f(a)$ = $\lim_{x \to a} f(x) \neq 0$ $= f(\alpha)$.: If is continuous at "a"

Derivative of Inverse Trigonometric function Differential coefficient of tensisc. Eg -0 50 m Griber : g= tans'sc. is $\tan y = x \longrightarrow 0$ Diff O. W. rts. x. d/dr (torny) = d/dr (x) Sect y dy/dx =1 $dy_{dix} = \frac{1}{5ec^2 y} = \frac{1}{1+tar^2 y} = \frac{1}{1+x^2}$ { By Eq. 0 } $\frac{d}{d^2}(\tan^2 \alpha) = \frac{1}{1+2c^2}$ f with 5 J see a ≠ 1+ tanto } $|| \frac{dy}{dx} \frac{dx}{dx} \left(\frac{dx}{dx} \right) = \frac{-1}{1+2c^2}$ Differential wefficient ut Sin's. Eg - @ Solut Criven y = shi > 12, Simy = 2 ->0 Diff O. W. r. to. x. Cyy(dy/dx) = 1f Sinto + (ws a = 1dy/dz = ty as = 1-5m2 - Jungineu Q10= J1-5into and Equ O $\| \| \psi \| d_{d_{X}}(\omega \overline{y}' x) = \frac{-1}{\sqrt{1-x^2}}$

Eq. (3) Find the derivative of
$$\left[\frac{hgx}{ginx}\right]$$
.
Solvin:
Given $y = \frac{hgx}{ginx}$.
 $\begin{cases} h.k.t.T = \frac{vdu}{v^2} - \frac{vdu}{v^2} \\ heb. = \frac{hgx}{v^2} \\ Heb. = \frac{hgx}{v^2} \\ du = \frac{y_x}{v^2} \\ du = cosx \\ du = \frac{y_x}{v^2} \\ dv = \frac{cosx}{(ginx)^2} \\ y' = \frac{y_x}{ginx} - \frac{hgx}{(ginx)^2} \\ y' = \frac{y_x}{ginx} - \frac{hgx}{ginx} \\ gu = \frac{ginx}{v^2} \\ y' = \frac{y_x}{ginx} - \frac{hgx}{ginx} \\ gu = \frac{ginx}{ginx} \\ f(x) = x e^x ginx. \\ f(x) = x e^x ginx + x (e^x) ginx + x e^x (cosx) \\ f'(x) = e^x ginx + x e^x ginx + x e^x (cosx) \\ f'(x) = e^x ginx + x e^x ginx + x e^x (cosx) \\ f'(x) = e^x ginx + x e^x ginx + x e^x (cosx) \\ f'(x) = e^x ginx + x e^x ginx + x e^x (cosx) \end{cases}$

A0

Eg.(5) Find the derivative of
$$f(x) = (\omega 5' \left[\frac{b+a(\omega x)}{a+b(\omega x)} \right]$$

solut
bet $f(x) = (\omega^{-1} \left[\frac{b+a(\omega x)}{a+b(\omega x)} \right]$
put $U = \frac{b+a(\omega x)}{a+b(\omega x)}$, thence $f(x) = (\omega 5'(u))$
 $D \# U = \frac{b+a(\omega x)}{a+b(\omega x)}$, $\frac{1}{2 \to 0}$
 $D \# U = \frac{b+a(\omega x)}{a+b(\omega x)}$
and $U = \frac{b+a(\omega x)}{a+b(\omega x)}$
 $D \# U = \frac{b+a(\omega x)}{a+b(\omega x)}$
 $D \# U = \frac{(a+b(\omega x))(-a \sin x) - (b+a(\omega x))(-b \sin x)}{(a+b(\omega x))^{2}}$
 $\frac{du}{dx} = \frac{(a+b(\omega x))(-a \sin x) - (b+a(\omega x))(-b \sin x)}{(a+b(\omega x))^{2}}$
 $= -\frac{a^{2} \sin x}{(a+b(\omega x))^{2}} - \frac{(b+a(\omega x))^{2}}{(a+b(\omega x))^{2}}$
 $= -\frac{a^{2} \sin x}{(a+b(\omega x))^{2}} - \frac{(a+b(\omega x))^{2}}{(a+b(\omega x))^{2}}$
 $\frac{du}{dx} = \frac{(b^{2}-a^{2}) \sin x}{(a+b(\omega x))^{2}}$
 $\frac{du}{dx} = \frac{(b^{2}-a^{2}) \sin x}{(a+b(\omega x))^{2}}$
 $\frac{du}{dx} = \frac{(b^{2}-a^{2}) \sin x}{(a+b(\omega x))^{2}}$
 $\frac{du}{dx} = \frac{-1}{\sqrt{1-a^{2}}} - \frac{du}{dx}$
 $= -\frac{1}{\sqrt{1-(\frac{b+a(\omega x)}{a+b(\omega x)})^{2}}} - \frac{(b^{2}-a^{2}) \sin x}{(a+b(\omega x))^{2}}$

$$= \frac{-1}{\sqrt{1 - \frac{(b+a(u)x)^2}{(a+b(u)x)^2}}} \frac{(b-a^2) \sin x}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a+b(u)x)^2}{(a+b(u)x)^2}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a+b(u)x)^2}{(a+b(u)x)^2}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a^2+b^2(u)^2x+2ab(u)x)}{(a+b(u)x)^2}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a^2-a^2(u)^2x+2ab(u)x)}{(a+b(u)x)^2}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a^2+b^2)}{(a+b^2(u)x)}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a^2+b^2)}{(a+b^2(u)x)}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}$$

$$= \frac{-1}{\sqrt{\frac{(a^2+b^2)}{(a+b^2(u)x)^2}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}{(a+b(u)x)^2}$$

$$= \frac{-1}{\sqrt{\frac{(a^2+b^2)}{(a+b^2(u)x)^2}}} \times \frac{(b^2-a^2) \sin x}{(a+b(u)x)^2}}$$

$$= \frac{-1}{\sqrt{(a+b)} \sin^{2}x} \times \frac{(b-a)}{(a+b} \sin^{2}x}{(a+b \cos x)^{2}}$$

$$= \frac{-(a+b\cos x)}{\sqrt{(a+b)} \sin^{2}x} \times \frac{(b-a)}{(a+b} \sin^{2}x}{(a+b) \sin^{2}x}$$

$$= \frac{-(b-a)}{\sqrt{(a+b)} \sin^{2}x} (a+b\cos x)$$

$$= \frac{(a^{2}-b^{2}) \sin^{2}x}{\sqrt{(a+b)} \sin^{2}x} (a+b\cos x)$$

$$= \frac{(a^{2}-b^{2}) \sin^{2}x}{\sqrt{(a+b)} \sin^{2}x} (a+b\cos x)$$

$$f(a) = \frac{(a^{2}-b^{2})}{(a+b\cos x)}$$

$$\frac{f(a)}{\sqrt{(a+b)} \sin^{2}x} (a+b\cos x)$$

é

$$(3) = y = \log v.$$

$$Duff. u. r b. x$$

$$y' = \frac{1}{u} \frac{du}{dx}$$

$$= \frac{1}{tan v} \cdot \operatorname{Sec}^{2}(e^{n}) (e^{n})$$

$$= \frac{1}{tan(e^{n})} \cdot (e^{n}) \operatorname{Sec}^{2}(e^{n})$$

$$= \operatorname{Cot}(e^{n}) (e^{n}) \operatorname{Sec}^{2}(e^{n})$$

$$y' = e^{n} \operatorname{Cut}(e^{n}) \operatorname{Sec}^{2}(e^{n}) / (e^{n})$$

{ w.k.r { temo = lato}

Find the delivative of
$$\tan h^{-1}(sinx)$$
.
solut:
Criven $f(x) = \tan h^{-1}(sinx)$
let $U = 5hx^{2} - 90$
 $dy = 6nx - 90$
 $h = f(x) = \tan h^{-1}(u)$
 $nift. w. x b \cdot x$
 $f(x) = \frac{1}{1-u^{2}} \frac{dy}{dx}$
 $= \frac{1}{1-sin^{2}x} \cos x$
 $= \frac{1}{\cos x}$
 $f(x) = see x$

45)

*

46 Eg- Find the derivative of tanh (ten 2/2). 50 m2' Criber f(x) = tan h (tan 2/2) Let [U = tan(2/2) -> 0 $\frac{dy}{dx} = \frac{1}{2} \operatorname{See}^{\prime}(\frac{5}{2}) \longrightarrow (2)$ 4 for = tan hiles ---mill- w. r. to. Se' $f(x) = \frac{1}{1 - u^2} du/dx$ Use ORO $= \frac{1}{1 - \tan(2/2)} \frac{1}{2} \sec^{2}(2/2)$ $= \frac{1}{1 - \tan^{2}(24_{2})} = \frac{1}{1 - \frac{1}{2}} \frac{5ec^{2}(24_{2})}{1 - \frac{1}{2}}$ 1- (ans (242) $= \frac{\gamma_2}{(\cos^2(2\lambda_1) - \sin^2(2\lambda_2))} = \frac{\gamma_2}{(\cos^2(2\lambda_1) - \sin^2(2\lambda_2))} = \frac{\gamma_2}{(\cos^2(2\lambda_1) - \sin^2(2\lambda_2))} \times \frac{(\cos^2(2\lambda_2) - \sin^2(2\lambda_2))}{(\cos^2(2\lambda_2) - \sin^2(2\lambda_2))}$ $= \frac{1/2}{\cos^{2}(24\nu)} = \frac{1}{2} \frac{1}{\cos^{2}(24\nu)} = \frac{1}{2} \frac{1}{\cos^{2}(24\nu)$

f(n) = 1/2 Seex //

Example.
Find
$$\frac{dy}{dx}$$
, if $y = x^2 e^{2x} (x^2+1)^4$
Solve that $y = x^2 e^{2x} (x^2+1)^4$
(when that $y = x^2 e^{2x} (x^2+1)^4$
(when $uvw = duvw + uvdwy$
 $\frac{dy}{dx} = 2x e^{x} (x^2+1)^4 + 2x^2 e^{x} (x^2+1)^4 + x^2 e^{x} h(x^2+1)^2(2x)$
 $= 2x e^{2x} (x^2+1)^4 + 2x^2 e^{x} (x^2+1)^4 + 8x^3 e^{2x} (x^2+1)^3$

(45+1)

Example. Find y' for (us (xy) = 1+ Siny Soln:-Contra that (oy(xy) = 1 + Sim y) $- \sin(xy)[xy'+y(x)] = \cos y(y')$ -5im(xy)[xy'+y] = y' wyy[xy'+y] = y' wy-sim(xy) $\frac{2(y'+y)}{y'} = -\frac{(yy)}{sim(y)}$ $\frac{\chi y'}{y_{T}} + \frac{y}{y_{T}} = -\frac{\zeta y y}{s \hat{m}(\chi y)}$ $\mathcal{I}(\frac{y}{y}) = \frac{-cyy}{sin(xy)}$ $\frac{g}{g'} = -\frac{\cos g}{\cos (xg)} - x$

$$\frac{y}{y'} = \frac{-\cos y}{\sin(xy)} - x$$

$$\frac{y}{y'} = -\frac{\cos y}{-x} \frac{-\cos (xy)}{\sin(xy)}$$

$$\frac{y}{y'} = \frac{-\cos (xy)}{\sin(xy)}$$

$$\frac{y'}{y} = \frac{Sin(y)}{-\cos y - 2(\sin(xy))}$$

$$y' = \frac{y \sin(xy)}{-\cos y - x \sin(xy)}$$

×

CHAPTER-1-4 E MAXIMUM AND MINIMUM]

Detrimined by a number in the domain D of a
function f. the f(c) is the
(a) Absolute maximum value of for D.
if
$$f(c) \ge f(c)$$
, $\forall \ge in D.$
(b) Absolute minimum value of f or D.
if $f(c) \le f(x)$, $\forall \ge in D.$
(b) Absolute minimum value of f, if $f(c) \ge f(x)$, when sins
(a) hocal maximum value of f, if $f(c) \ge f(x)$, when sins
(b) hocal minimum value of f, if $f(c) \ge f(x)$, when sins
 $\frac{Format's}{Tf} = \frac{1}{Tf} f$ has local maximum (a) minimum
at c' and if $f(c) \ge 5005t$, then $f(c) = 0.$
(c) Find the critical number of $f(x) = x^{2r}(A-x)$
 $\frac{Format's}{Tf} = \frac{1}{Tf} x^{2r} - x^{2r}x'$
 $f(x) = Ax^{2r} - x^{2r}x'$

(47)

$$\begin{aligned} & f(x) = 4 2x^{3/5} - x^{3/5} - x^{3/5} - \frac{5}{5}x^{3/5} - \frac{5}{5}x^{3$$

48)

Eg. 2: Find the absolute maximum and minimum balances
of the function
$$f(0) = x^3 - 3x^2 + 1$$
, $-\frac{1}{2} \le x \le 4$.
Solur:
Given $f(x) = x^3 - 3x^2 + 1$, $\frac{1}{2} = \frac{1}{2} \le 2$.
 $f(x) = 3x^2 - 6x$
Put $f(x) = -\frac{1}{2} = 3x^2 - 6x = 0$
 $x^2 - 2x = 0$
 $x(x-2) = 0$
 $\frac{1}{|x=2|} = x = 0, 2$

$$f(2) = 1, \quad f(2) = (2^{3} - 3(2^{2}) + 1)$$

$$= 8 - 3(4) + 1$$

$$= 8 - 12 + 1$$

$$f(2) = -3$$

$$f(-1) = (-1)^{3} - 3(-1)^{3} + 1$$

$$= -1 - 6 + 8 = \frac{1}{8}$$

$$f(-1) = (-1)^{3} - 3(-1)^{3} + 1$$

$$= -\frac{1 - 6 + 8}{8} = \frac{1}{8}$$

$$f(-1) = (-1)^{3} - 3(-1)^{3} + 1$$

$$= -\frac{1 - 6 + 8}{8} = \frac{1}{8}$$

$$f(-1) = (-1)^{3} - 3(-1)^{3} + 1$$

$$= -\frac{1 - 6 + 8}{8} = \frac{1}{8}$$

$$f(-1) = (-1)^{3} - 3(-1)^{3} + 1$$

$$= -\frac{1 - 6 + 8}{8} = \frac{1}{8}$$

$$f(-1) = \frac{1}{8}$$

Eq. (2) Find the absolute minimum and maximum values for the function $b(x) = x - 2 \sin x$, $0 \le x \le 2\pi$. Solver Given $f(x) = x - 2 \sin x$, $0 \le x \le 2\pi$.

15

 $f(0) = 1 - 2 \log n$

Put
$$f(y) = 0 \implies 1-2 \text{ CMX} = 0$$

 $2 \text{ CMX} = 1$
 $\text{ CMX} = \frac{1}{2}$
 $x = \frac{1}{2} \text{ CMX} = \frac{1}{2} \text{ CMX}$
 $= \frac{1}{2} - \frac{1}{2} \frac{1}{2} \text{ CMX}$
 $= \frac{1}{2} - \frac{1}{2} \frac{1}{2} \text{ CMX}$
 $= \frac{1}{2} - \frac{1}{2} \frac{1}{2} \frac{1}{2} \text{ CMX}$
 $= \frac{1}{2} - \frac{1}{2} \frac{1}{2}$

×,

ROLLE'S THEOREM :-

jet if be a function that satisfies the following three assumptions.

1)
$$f$$
 is continuous on the closed interval [9,b]
ii) f is differentiable on the open interval (9,b)
iii) $f(a) = f(b)$, then there is a number 'C'
 $in(9,b) = f(c) = 0$.

Eg-0 Verify the function
$$f(x) = 5 - 12x + 3x^2$$
 in [1,3]
Satisfies the Rolle's theorem.

Current that $f(x) = 5 - 12x + 3x^{2}$ Since, f(x) is polynomial and hence its continuous and differentiable. $f(1) = 5 - 12(0) + 3(0)^{2} = 5 - 12 + 3 = -4$ $f(3) = 5 - 12(3) + 3(3)^{2} = 5 - 36 + 27 = -4$

$$f(n) \cdot satisfied the Rolle's theorem
 $f(n) = -12 + 6x$$$

(52) f(i) = Cos 22 in [1/8, 7/8]. Eg - 2 Soln_ Given that for = Cos 22 in [7/8, 7/8] Since, fais is continuous and differentiable in [78, 78/3] $f(75) = (2) 2(75) = (2) \frac{7}{4} = \frac{1}{\sqrt{2}}$ $f(n_8) = f(n_8)$. for satisfies the Rolle's theorem. $f(x) = -2 \sin 2x$ $f(c) = 0 \implies -25in2c = 0$ 5in 2C = 0 20= 00 C= n/2 put n=1 => c= M2.

MEAN VALUE THEOREM :-

let f be a function that satisfies the two the assemptions. i) f is continuous on the closed interval [a,b] ii) f is differentiable on the open interval (a,b) then there as a number C in (a,b) such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Eq.) Verify the mean value theorem on the goven interval, and find all values of C in that interval that Satisfy the theorem (a)
$$f^{(1)} = 5.5$$
.

Solur

(a) Given that $f(0) = x^{2} - x$ in [-3, 5]Simo, $f(0) = x^{2} - x$ is a palynomial. It is Continuous on [-3, 5] and differentiable on (-3, 5). By mean value theorem, $f'(c) = \frac{f(b) - f(c)}{b - a}$ $f(a) = f(-3) = (-3)^{2} - (-3) = 9 + 3 = 62$ $f(b) = f(5) = (5)^{2} - 5 = 25 - 5 = 20$ $\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(-3) - f(-3)}{5 - (-3)} = \frac{20 - 12}{5 + 3}$ $= \frac{8}{8} = 1 = 1.5$ 53)

Then
$$f'(x) = 2x - 1$$

 $f(c) = 0 \Rightarrow 2c - 1 = 0$
 $2c = 1 + 1 \Rightarrow 2c = 2$
 $f(-1) = 0 \Rightarrow 2c - 1 = 0$
 $c = 2/2 \quad [c=]$
 $c = 1 f(-1) = \sqrt{2c - x^2} \quad dx [-5, 3]$
(b) Criven that $f(x) = \sqrt{2s - x^2} \quad dx [-5, 3]$
 $sinc \quad f(x) \ ds \ Continuous \ on [-5, 3] \ ond$
 $differentiable \ dn [-5, 3]$
By M. V.T $f'(c) = \frac{f(b) - f(a)}{b - a}$
 $f(a) = f(-5) = \sqrt{2s - (-5)^2} = \sqrt{2s - 2s} = 0$
 $f(b) = f(-5) = \sqrt{2s - (-5)^2} = \sqrt{2s - 2s} = 0$
 $f(b) = f(-5) = \sqrt{2s - (-5)^2} = \sqrt{2s - 2s} = 0$
 $f(b) = f(-5) = \sqrt{2s - (-5)^2} = \sqrt{2s - 2s} = 0$
 $f(b) = f(-5) = \sqrt{2s - (-5)^2} = \sqrt{2s - 2s} = \sqrt{16} = 4$
 $\therefore \quad \frac{f(b) - f(a)}{b - a} = \frac{4 - 0}{3 - (-5)} = \frac{4}{3 + 5} = \frac{4}{8} = \frac{1}{2}$
 $den \quad f'(x) = \frac{-2x}{2\sqrt{2s - x^2}} = \frac{-x}{\sqrt{2s - x^2}}$
 $f'(c) = \frac{-c}{\sqrt{2s - c^2}} = \frac{1}{2}$
 $-c = \frac{1}{2} \sqrt{2s - c^2}$

$$c^{\perp} = \frac{1}{4} (25 - c^{\perp})$$

$$c^{\perp} = \frac{25}{4} - \frac{c^{\perp}}{4}$$

$$c^{\perp} + c^{\perp}_{4} = \frac{25}{4}$$

$$\frac{4c^{\perp} + c^{\perp}}{4} = \frac{25}{47}$$

$$5c^{\perp} = 25$$

$$c^{\perp} = 25$$

$$c^{\perp} = 5$$

$$c^{\perp} = 12x^{2} - 12x^{2} - 5$$

$$c^{\perp} = 12x(x - 2)(x + 1)$$

į

55)

6	The critical points are, 0, 2, and 1.							
100	t'as	(x+1)	(c-2)	1200	Interval			
decreasing on (-00,-1)		~		-	XL-1			
Increasing on (-1,0)	.)	÷.	-		-122220			
decreasing on (0,2)	-	+	2	+	02262			
Increasing on (2, 5)	+	t	÷	÷	2>2			

Eg. (3) Find the bocal meximum and minimum values of the function f(x) = 5C+25inx, $0 \le x \le 2\pi$. Solur Given that f(x) = x + 25inx. $[0, 2\pi]$ then f(x) = 1 + 2695xThe critical Points are $f'(x) = 0 \implies 1 + 264x = 0$ $2\cos x = -1$ $\cos x = -\frac{1}{2}$

 The solutions are $x = 25/3$ and 45 3 25/3 403 20								
Interval	$\oint'(yz) = 1 + 2 \cos \chi$	·f(n)						
OLXL25/3	+	In Cleasing on (0, 20/3)						
21/3 2 7 2 40/3		Decreasing on (2013, 4073)						
Ho/3 LX L 25	+	Increasing on (40/3, 20)						

Since, fix, Changes from +ve to -ve at 25/3 hence for attains local maximum at 20/3 · The maximum value is f(20/3) = 20/3 + 2 Sin(20/3) = 20/3 + 2 (3/2) = 20/3+53 = 3-83/ Since, for changes from -ve to the at 40/3 hence for attains local minimum at 40/2 .: The minimum value is f(40/3) = 45 + 25in(40/3) $=45+2(-\sqrt{3}/2)$ = 41 - 53 = 2.46

Example-b For the function $f(x) = 2x^3 + 3x^2 - 36z$. (1) Find the intervals on which it is increasing or decreating. (1) Find the local maximum and minimum values of f. (1) Find the intervals of concervity and the inflections points. (1) Griven $f(x) = 2x^3 + 3x^2 - 36x$ $f'(x) = 6x^2 + 6x - 36$ $= 6(x^2 + x - 6)$ $= 5x^2 + 3x^2 - 35x$

f(2) = G(x+3)(x-2)

To apply Increasing or decreasing test, we have to find whose f'or >0 and f'as 20.

It depends on the sign of the two factors (x+3)(x-2).

Interval	(Je+3)	(7-2)	f(0)	fas		
922-3	-ve	-ve	tve	Industing on (-00, -3)		
-31212	tve	-Ve	-ve	Dectensing on (-3,2)		
sc>2	tve	tve	tre	Increasing on (2,00)		

(11) Since f(x) changes from size to -ve at x = -3hence f(x) attains local maximum at x = -3 \therefore othe Local maximum is $f(x) = 2x^3 + 3x^2 - 36x$ $f(-3) = 2(-3)^3 + 3(-3)^2 - 36(-3)$ = 2(-27) + 3(0) + 108 = -54 + 27 + 108 f(-3) = 81gSince f(x) changes from -ve to +ve at x = 2. hence f(x) attains local minimum at x = 2 \therefore othe Local minimum value is $f(x) = 2(2)^3 + 3(x)^2 - 36(2)$ = 2(8) + 3(4) - 72= 16 + 12 - 72

f(2) = -244

(ifi) by
$$f'(x) = 6x^2 + 6x - 36$$
 and $f''(y) = 12x + 6$
 $f''(x) = 0 \Rightarrow 12x + 6 = 0$
 $12x = -6$
 $x = -6/12 \Rightarrow px = -1/2$
 $f''(x) > 0, \Rightarrow x > -1/2$ and $f''(y) < 0 \Rightarrow x < -1/2$
Thus f is concave appoind on $(-1/2, 50)$
 $The inflection point at $[-1/2, +f(-1/2)]$
 $f(x) = 2(x^2) + 3(x^2) - 36(x)$
 $f(x) = 2(x^2) + 3(x^2) - 36(-1/2)$
 $= 2(-1/2)^2 + 3(-1/2)^2 - 36(-1/2)$
 $= -1/4 + 3/4 + 18 = 3/4 + 18$
 $= 1/2 + 18 = 1 + 36$
 $f(-1/2) = 37/2$
 $The inflection Point at $[-1/2, -37/2]$
Example (5)
For the function $f(x) = 2 + 2x^2 - x^4$, find the intervals of increase on decrease, local maximum and minimum values, the intervaly of concavity and the inflection Points.
Solut: Let $f(x) = 2 + 2x^2 - x^4$$$

 $\begin{aligned}
f'(p_{1}) &= 4\pi - 4\pi^{3} & \int w \cdot k \cdot \tau \\
&= 4\pi (1 - 2c^{2}) & \int a^{2} - b^{2} = (a + b) (a - b) \\
\phi'(p_{1}) &= 4\pi (1 + 2c) (1 - 2c)
\end{aligned}$

TO apply increasing or decreasing test, we have to find where b'ow > 0 and b'ou 20.

Interval		(-~~)	(1+22)	100	far)
x 2 - 1	- ve	tve	-ve	tre	Incleasing on (-10,-1)
-129120	-ve	+ve	tre	-Ve	decleasing on (-1,0)
027(2)	tve	tve	tve	tre	Increasing on (0, 1)
x>2	t ve	-ve	tre	-ve	decreasing on (1,00)

(F1) f(c) changes from the to -ve at $\overline{p}(z=-1)$ hence f(v) attains local measurement at x=-1... hocal measurement as $f(v) = 2+2x^2-x^4$ $f(t) = 2+2(y^2-(t))^2$ = 2+2-1 = 4-1 $\overline{f(v)} = 3\overline{f(v)}$ hence f(v) attains local minimum at x=0... Local minimum value is f(v) = 2+0-0 $\overline{f(v)} = 2\overline{f(v)}$

> for changes from the to the at $\overline{[x=]}$ hence for attains local meximum at $\overline{[x=]}$... Local modimum value is $f(x) = 2+2(x)^2 - (x)^4$ = 2+2-1= 4-1f(x) = 3

Example - 6

Find the local maximum and minimum values of $f(x) = \sqrt{\chi} - \sqrt[4]{\chi}$ aging both first and second delivative test. Solut:

61

$$f(x) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$

$$f(x) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}}$$

$$f'(x) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{4}}$$

$$f'(x) = \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{4}}$$

(i) First derivative last: -
$$f(n) = 0$$

 $f(n) = 0$
 $f(n) = 0$
 $f(n) = 0$
 $f(n) = 1$
 $f(n) = 0$
 $f(n) = 0$

f'(v) > 0 when x > 1/6Similarly. $f'(v) \ge 0 \ge 0 \le x \le 1/6$ Since f'(v) changes from negative to Positive at x = 1/6. The hold minimum value is $f(x) = \sqrt{x} - 4\sqrt{x}$ $f(1/6) = \sqrt{1/6} - 4\sqrt{1/6} = 1/4 - 1/2 = -1/4$ f(1/6) = -1/4 (62

(11) Gelond derivative tist 1 -
by
$$f'(x) = \frac{1}{4} x^{-\frac{1}{4}} - \frac{1}{4} x^{-\frac{3}{4}}$$

 $f''(x) = -\frac{1}{4} x^{-\frac{3}{2}} + \frac{3}{16} x^{-\frac{3}{4}}$
 $f''(x) = -\frac{1}{4} \frac{1}{\sqrt{x^3}} + \frac{3}{16} \frac{1}{\sqrt{x^7}}$
 $f'(x) = 0 \implies 2 \sqrt[6]{x-1} = 0 \implies \boxed{x = \frac{1}{6}}$
 $f''(x) = \frac{-1}{4\sqrt{x^3}} + \frac{3}{16\sqrt{x^7}}$
 $f''(y_6) = \frac{-1}{4\sqrt{(\frac{1}{6})^3}} + \frac{3}{16\sqrt{(\frac{1}{123})}}$
 $= \frac{-1}{4\sqrt{(\frac{1}{6})}} + \frac{3}{16(\frac{1}{123})} \neq \frac{1}{6}$
 $= -\frac{1}{(\frac{1}{6})} + \frac{3}{(\frac{1}{8})} = -\frac{16}{8} + 3(8)$
 $= -\frac{16}{24}$
 $f''(\frac{1}{16}) = 8 > 0$

The Local minimum value Dat x = 1/6 is $f(y_{16}) = \sqrt{y_{16}} - \frac{4}{3}\sqrt{1/6}$ = 1/4 - 1/2 $f(y_{16}) = -1/4$

×